Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(A=11\left(\frac{5}{11.6}+\frac{5}{16.21}+......+\frac{5}{36.41}\right)\)
\(=11\left(\frac{1}{11}-\frac{1}{16}+\frac{1}{16}-\frac{1}{21}+.....+\frac{1}{36}-\frac{1}{41}\right)\)
\(=11\left(\frac{1}{11}-\frac{1}{41}\right)\)
\(=11.\frac{30}{451}=\frac{30}{41}\)
a)\(\frac{864.48-432.96}{864.48+432}\)
=\(\frac{864.48-432.2.48}{864.48+432}\)
=\(\frac{864.48-864.48}{864.48+432}\)
=\(\frac{0}{864.48+432}\)
=0
864x48-432x96/864x48+432=2x432x48-432x48x2/864x48+432=0/864x48+432=0.
**** mình nha
a) 17,5 x 4,5 + 2,5 x 4 + 2,5 x 4,5
= 17,5 x 4 + ( 4,5 + 2,5 ) + ( 4,5 + 2,5 )
= 70 + 7 + 7
= 84
b) 1/1.2 + 1/2.3 + 1/3.4 + ....+ 1/15.16
= 1 - 1/2 + 1/2 - 1/3 + 1/3 - 1/4 + 1/4 - 1/5 + .... + 1/15 - 1/16
= 1 - 1/16
= 15/16
A) \(\frac{1}{6}\) = 0,1666666665
B) 0,1666669167
\(\frac{1}{6}\) < \(\frac{111111}{666665}\)
Bạn lấy tử chia cho mẫu là ra
Bài 1 :
\(S=\frac{1}{1}-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+...+\frac{1}{2010}-\frac{1}{2011}\)
\(S=\frac{1}{1}-\frac{1}{2011}=\frac{2010}{2011}\)
Bài 2 :
\(S=\frac{1}{10}-\frac{1}{13}+\frac{1}{13}-\frac{1}{16}+\frac{1}{16}-\frac{1}{19}+...+\frac{1}{58}-\frac{1}{61}\)
\(S=\frac{1}{10}-\frac{1}{61}=\frac{51}{610}\)
Bài 3 :
\(3S=\frac{3}{4\times7}+\frac{3}{7\times11}+...+\frac{3}{19\times22}\)
\(3S=\frac{1}{4}-\frac{1}{7}+\frac{1}{7}-\frac{1}{11}+...+\frac{1}{19}-\frac{1}{22}\)
\(3S=\frac{1}{4}-\frac{1}{22}\)
\(S=\frac{18}{88}\div3=\frac{6}{88}\)
\(\frac{55}{16.21}\)chứ nhỉ.
A=\(\frac{55}{11.16}+\frac{55}{16.21}+\frac{55}{21.26}+\frac{55}{26.31}+\frac{55}{31.36}+\frac{55}{36.41}\)
A= 11.\(\left(\frac{1}{11}-\frac{1}{16}+\frac{1}{16}-\frac{1}{21}+\frac{1}{21}-\frac{1}{26}+....+\frac{1}{36}-\frac{1}{41}\right)\)
A= 11\(\left(\frac{1}{11}-\frac{1}{41}\right)\)
A= 11.\(\frac{30}{451}\)
A= \(\frac{30}{41}\)
\(\frac{60\times48+120\times31}{55\times16+55\times4}=\frac{60\times2\times24+120\times31}{55\times\left(16+4\right)}\)
\(=\frac{120\times24+120\times31}{55\times20}\)
\(=\frac{120\times\left(24+31\right)}{55\times20}\)
\(=\frac{120\times55}{55\times20}=6\)
\(\frac{60\times48+120\times31}{55\times16+55\times4}=\frac{60\times48+60\times62}{110\times8+110\times2}=\frac{60\times\left(48+62\right)}{110\times\left(8+2\right)}=\frac{60\times110}{110\times10}=\frac{60}{10}=6\)