Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(2C=\frac{3-1}{1.2.3}+\frac{4-2}{2.3.4}+\frac{5-3}{3.4.5}+...+\frac{39-37}{37.38.39}\)
\(2C=\frac{1}{1.2}-\frac{1}{2.3}+\frac{1}{2.3}-\frac{1}{3.4}+\frac{1}{3.4}-\frac{1}{4.5}+...+\frac{1}{37.38}-\frac{1}{38.39}\)
\(2C=\frac{1}{1.2}-\frac{1}{38.39}\)
\(C=\frac{617}{1482}\)
\(3D=1+\frac{1}{3}+\frac{1}{3^2}+...+\frac{1}{3^7}\)
\(3D-D=1-\frac{1}{3^8}\)
\(D=\frac{1}{2}-\frac{1}{2.3^8}\)
Ta có:\(\frac{1}{2}.\left(\frac{1}{1.2}-\frac{1}{2.3}+\frac{1}{2.3}-\frac{1}{3.4}+....+\frac{1}{37.38}-\frac{1}{38.39}\right)\)
\(=\frac{1}{2}.\left(\frac{1}{2}-\frac{1}{38.39}\right)\)
b,\(D=\frac{1}{3}+\frac{1}{3^2}+...+\frac{1}{3^8}\)
\(\Rightarrow3D=1+\frac{1}{3}+\frac{1}{3^2}+.....+\frac{1}{3^7}\)
\(\Rightarrow2D=1-\frac{1}{3^8}\)
\(\Rightarrow D=\frac{3^8-1}{3^8}:2\)
H = \(\frac{1}{1.2}-\frac{1}{1.2.3}+\frac{1}{2.3}-\frac{1}{2.3.4}+\frac{1}{3.4}-\frac{1}{3.4.5}+...+\frac{1}{99.100}-\frac{1}{99.100.101}\)
\(=\left(\frac{1}{1.2}+\frac{1}{2.3}+\frac{1}{3.4}+....+\frac{1}{99.100}\right)-\left(\frac{1}{1.2.3}+\frac{1}{2.3.4}+....+\frac{1}{99.100.101}\right)\)
Đặt G = \(\left(\frac{1}{1.2}+\frac{1}{2.3}+\frac{1}{3.4}+....+\frac{1}{99.100}\right)\)
= \(1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+....+\frac{1}{99}-\frac{1}{100}\)
= \(1-\frac{1}{100}\)
= \(\frac{99}{100}\)
Đặt K = \(\left(\frac{1}{1.2.3}+\frac{1}{2.3.4}+....+\frac{1}{99.100.101}\right)\)
=>2K = \(\left(\frac{2}{1.2.3}+\frac{2}{2.3.4}+....+\frac{2}{99.100.101}\right)\)
= \(\frac{1}{1.2}-\frac{1}{2.3}+\frac{1}{2.3}-\frac{1}{3.4}+...+\frac{1}{99.100}-\frac{1}{100.101}\)
= \(\frac{1}{1.2}-\frac{1}{100.101}\)
= \(\frac{1}{2}-\frac{1}{10100}\)
= \(\frac{5049}{10100}\)
=> K =\(\frac{5049}{10100}:2=\frac{5049}{10100}.\frac{1}{2}=\frac{5049}{20200}\)
Thay G,K vào H ta có :
H = \(\frac{99}{100}-\frac{5049}{20200}\)
Tự tính :)
\(H=\frac{1}{1.2}-\frac{1}{1.2.3}+\frac{1}{2.3}-\frac{1}{2.3.4}+...+\frac{1}{99.100}-\frac{1}{99.100.101}\)
\(=\left(\frac{1}{1.2}+\frac{1}{2.3}+...+\frac{1}{99.100}\right)-\left(\frac{1}{1.2.3}+\frac{1}{2.34}+...+\frac{1}{99.100.101}\right)\)
\(=\left(1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+...+\frac{1}{99}-\frac{1}{100}\right)-\frac{1}{2}\left(\frac{2}{1.2.3}+\frac{2}{2.3.4}+...+\frac{2}{99.100.101}\right)\)
\(=\left(1-\frac{1}{100}\right)-\frac{1}{2}\left(\frac{1}{1.2}-\frac{1}{2.3}+\frac{1}{2.3}-\frac{1}{3.4}+...+\frac{1}{99.100}-\frac{1}{100.101}\right)\)
\(=\frac{99}{100}-\frac{1}{2}\left(\frac{1}{1.2}-\frac{1}{100.101}\right)=\frac{99}{100}-\frac{1}{2}.\frac{5049}{10100}=\frac{99}{100}-\frac{5049}{20200}=\frac{14949}{20200}\)
Bai3
201620162016/201720172017=2016.100010001/2017.100010002=2016/2017
Vay 201620162016/201720172017=2016/2017
bài 1 kobik
bài 2\(\frac{1}{39600}\):\(\frac{1}{4}\)=\(\frac{2}{33}\)
bài 3\(\frac{201620162016}{201720172017}=\frac{2016}{2017}\)
nên mó bằng nhau
\(A=\frac{1}{6.10}+\frac{1}{10.14}+\frac{1}{14.18}+\frac{1}{18.22}+\frac{1}{22.26}+\frac{1}{26.30}\)
\(=\frac{1}{4}.\left(\frac{1}{6}-\frac{1}{10}+\frac{1}{10}-\frac{1}{14}+\frac{1}{14}-\frac{1}{18}+\frac{1}{18}-\frac{1}{22}+\frac{1}{22}-\frac{1}{26}+\frac{1}{26}-\frac{1}{30}\right)\)
\(=\frac{1}{4}.\left(\frac{1}{6}-\frac{1}{30}\right)=\frac{1}{4}.\frac{2}{15}=\frac{1}{30}\)
\(B=\frac{5}{2.3}+\frac{5}{3.4}+\frac{5}{4.5}+...+\frac{5}{8.9}\)\(=5.\left(\frac{1}{2.3}+\frac{1}{3.4}+\frac{1}{4.5}+...+\frac{1}{8.9}\right)\) \(=5.\left(\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+\frac{1}{4}-\frac{1}{5}+...+\frac{1}{8}-\frac{1}{9}\right)\)
\(=5.\left(\frac{1}{2}-\frac{1}{9}\right)=5.\frac{7}{18}=\frac{35}{18}\)
\(C=\left(\frac{7^2}{2.9}+\frac{7^2}{9.16}+....+\frac{7^2}{65.72}\right):\left(\frac{1}{3}-\frac{7}{36}\right)\)
\(=7.\left(\frac{7}{2.9}+\frac{7}{9.16}+...+\frac{7}{65.72}\right):\frac{5}{36}\) \(=7.\left(\frac{1}{2}-\frac{1}{9}+\frac{1}{9}-\frac{1}{16}+...+\frac{1}{65}-\frac{1}{72}\right):\frac{5}{36}\)'
\(=7.\left(\frac{1}{2}-\frac{1}{72}\right):\frac{5}{36}=7.\frac{35}{72}:\frac{5}{36}=\frac{49}{2}\)
\(D=\frac{2}{2.3.4}+\frac{2}{3.4.5}+...+\frac{2}{37.38.39}+\frac{2}{38.39.40}\)
\(=2.\left(\frac{1}{2.3.4}+\frac{1}{3.4.5}+...+\frac{1}{37.38.39}+\frac{1}{38.39.40}\right)\)
\(=2.\frac{1}{2}.\left(\frac{1}{2.3}-\frac{1}{3.4}+\frac{1}{3.4}-\frac{1}{4.5}+...+\frac{1}{37.38}-\frac{1}{38.39}+\frac{1}{38.39}-\frac{1}{39.40}\right)\)
\(=\frac{1}{2.3}-\frac{1}{39.40}=\frac{259}{1560}\)
\(E=\frac{202202}{1212}+\frac{202202}{2020}+\frac{202202}{3030}+\frac{202202}{4242}+\frac{202202}{5656}\)
\(=202202.\left(\frac{1}{3.4.101}+\frac{1}{4.5.101}+\frac{1}{5.6.101}+\frac{1}{6.7.101}+\frac{1}{7.8.101}\right)\)
\(=2002.\left(\frac{1}{3.4}+\frac{1}{4.5}+\frac{1}{5.6}+\frac{1}{6.7}+\frac{1}{7.8}\right)\)
\(=2002.\left(\frac{1}{3}-\frac{1}{4}+\frac{1}{4}-\frac{1}{5}+\frac{1}{5}-\frac{1}{6}+\frac{1}{6}-\frac{1}{7}+\frac{1}{7}-\frac{1}{8}\right)\)
\(=2002.\left(\frac{1}{3}-\frac{1}{8}\right)=2002.\frac{5}{24}=\frac{5005}{12}\)
a) Ta có : 7/12 = 7*8/12*8 = 56/96
5/8 = 5*12/8*12 = 60/96
Vì 56 < 57 < 60 nên 56/96 < 57/96 < 60 / 96
Vậy phân số cần tìm là 57/96
b) Ta có : 7/12 = 7*8/12*8 = 56/96
5/8 = 5*12/8*12 = 60/96
Vì 56 < 57 ; 58 < 60 nên 56/96 < 57/96 ; 58/96 < 60/96
Vậy các phân số cần tìm là 57/96 và 58/96
c) Ta có : 7/12 = 7*24/12*24 = 168/288
5/8 = 5*36/8*36 = 180/288
Vì 168 < 169 ; 170 ; 171 ; 172 ; 173 ; 174 ; 175 ; 176 ; 177 < 180 nên 168/288 < 169/288 ; 170/288 ; 171/288 ; 172/288 ; 173/288 ; 174/288 ; 175/288 ; 176/288 ; 177/288 < 180/288
Vậy các phân số cần tìm là : 169/288 ; 169/288 ; 170/288 ; 171/288 ; 172/288 ; 173/288 ; 174/288 ; 175/288 ; 176/288 ; 177/288.
d) Gọi phân số cần tìm là y/15, ta có : 7/12 = 7*10/12*10 = 70/120
5/8 = 5*15/8*15 = 105/120
y/15 = y*8/15*8 = 8y/120
Vì 70 < 71 ; 72 ; 73 ; ..... ; 103 ; 104 < 105 nên 70/120 < 71/120 ; 72/120 ; 73/120 ; ..... ; 103/120 ; 104/120 < 105/120
=> y*8 thuộc {71 ; 72 ; 73 ; ..... ; 103 ; 104}
mà y*8 chia hết cho 8 nên y*8 thuộc {72 ; 80 ; 88 ; 96 ; 104}
y thuộc {9 ; 10 ; 11 ; 12 ; 13}
Vậy phân số cần tìm là : pick random 9 to 13/15
a) \(\frac{31}{23}-\left(\frac{7}{23}+\frac{8}{23}\right)\)
\(=\frac{31}{23}-\frac{15}{23}\)
\(=\frac{16}{23}\)
b) \(\left(\frac{1}{3}+\frac{12}{67}+\frac{13}{41}\right)-\left(\frac{79}{67}-\frac{28}{41}\right)\)
\(=\frac{1}{3}+\frac{12}{67}+\frac{13}{41}-\frac{79}{67}+\frac{28}{41}\)
\(=\frac{1}{3}+\left(\frac{12}{67}-\frac{79}{67}\right)+\left(\frac{13}{41}+\frac{28}{41}\right)\)
\(=\frac{1}{3}+\frac{-67}{67}+\frac{41}{41}\)
\(=\frac{1}{3}-1+1\)
\(=\frac{1}{3}\)
c) \(\frac{38}{45}-\left(\frac{8}{45}-\frac{17}{52}-\frac{3}{11}\right)\)
\(=\frac{38}{45}-\frac{8}{45}+\frac{17}{52}+\frac{3}{11}\)
\(=\frac{30}{45}+\frac{17}{52}+\frac{3}{11}\)
\(=\frac{2}{3}+\frac{17}{52}+\frac{3}{11}\)
\(=\frac{104+51}{156}+\frac{3}{11}\)
\(=\frac{155}{156}+\frac{3}{11}\)
\(=\frac{156}{156}-\frac{1}{156}+\frac{3}{11}\)
\(=1-\frac{1}{156}+\frac{3}{11}\)
\(=1-\left(\frac{11-468}{1716}\right)\)
\(=1-\frac{-457}{1716}\)
\(=1+\frac{457}{1716}\)
\(=\frac{2173}{1716}\)
a)31/23-(7/32+8/23)=31/23-7/32-8/23=(31/23-8/23)-7/32=1-7/32=25/32
Cặp 1 : -7/14 ; -8/16 ; 9/-18
Cặp 2 : 2/3 ; -18/-27
Cặp 3 : 40/-32 ; -65/52
Cặp 4 : 13/9 ; -39/27
A)15x2154/1505
=6462/301
B)=103/1031
C)=327/328+400/-12
=727/316
D)=4/5
Bai 2=4 ta thay mau so la 4 nen 43-4=39 va 56-4=52 ta se thay 39/52=3/4.
\(\frac{3.4.5}{10.2.6}=\frac{3.2.2.5}{2.5.2.2.3}=\frac{1}{2}\)
\(\frac{6.8.12.16}{4.12.6.8}=\frac{6.8.12.4.4}{4.12.6.8}=\frac{4}{1}=4\)
a)=1/2
b) =4