Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Gọi \(A=\frac{1}{1.4}+\frac{1}{4.7}+\frac{1}{7.10}+...+\frac{1}{22.25}\)
\(\Leftrightarrow\)\(3A=\frac{3}{1.4}+\frac{3}{4.7}+\frac{3}{7.10}+...+\frac{3}{22.25}\)
\(\Leftrightarrow\)\(3A=\frac{1}{1}-\frac{1}{4}+\frac{1}{4}-\frac{1}{7}+\frac{1}{7}-\frac{1}{10}+...+\frac{1}{22}-\frac{1}{25}\)
\(\Leftrightarrow\)\(3A=1-\frac{1}{25}\)
\(\Leftrightarrow\)\(3A=\frac{24}{25}\)
\(\Leftrightarrow\)\(A=\frac{24}{25}:3\)
\(\Leftrightarrow\)\(A=\frac{24}{25}.\frac{1}{3}\)
\(\Leftrightarrow\)\(A=\frac{8}{25}\)
Vậy \(A=\frac{8}{25}\)
Đặt \(C=\frac{1}{1.4}+\frac{1}{4.7}+...+\frac{1}{22.25}\)
\(\Rightarrow3C=\frac{3}{1.4}+\frac{3}{4.7}+\frac{3}{7.10}+....+\frac{3}{22.25}\)
\(\Rightarrow3C=1-\frac{1}{4}+\frac{1}{4}-\frac{1}{7}+\frac{1}{7}-\frac{1}{10}+...+\frac{1}{22}-\frac{1}{25}\)
\(\Rightarrow3C=1-\frac{1}{25}=\frac{24}{25}\)
\(\Rightarrow C=\frac{24}{25}:3=\frac{8}{25}\)
Vậy \(\frac{1}{1.4}+\frac{1}{4.7}+...+\frac{1}{22.25}=\frac{8}{24}\)
\(\frac{1}{5.6}+\frac{1}{6.7}+...+\frac{1}{19.20}\)
\(=\frac{1}{5}-\frac{1}{6}+\frac{1}{6}-\frac{1}{7}+...+\frac{1}{19}-\frac{1}{20}\)
\(=\frac{1}{5}-\frac{1}{20}\)
\(=\frac{4}{20}-\frac{1}{20}=\frac{3}{20}\)
\(\frac{2006\times125+100}{125\times200-880}=\frac{250850}{24120}\)
#)Giải :
A, \(\frac{254x399-145}{254+399x253}\)
\(=\frac{253x399+399-145}{254+399x253}\)
\(=\frac{253x399+254}{254+399x253}\)
\(=1\)
B, \(\frac{5932+6001x5931}{5931x6001-69}\)
\(=\frac{5932+6001x5931}{\left(5931+1\right)x6001-69}\)
\(=\frac{5932+6001x5931}{5931x6001+6001-69}\)
\(=\frac{5932+6001x5932}{5932x6001+5932}\)
\(=1\)
#~Will~be~Pens~#
\(\frac{254x399-145}{254+399x253}=\frac{\left(253+1\right)x399-145}{254+399x253}=\frac{253x399+1x399-145}{254+399x253}=\frac{253x399+254}{254+399x253}\)
\(=1\)
\(A=\frac{1}{5.9}+\frac{1}{9.13}+\frac{1}{13.17}+........+\frac{1}{100.104}\)
\(=\frac{1}{4}.\left(\frac{4}{5.9}+\frac{4}{9.13}+\frac{4}{13.17}+.......+\frac{4}{100.104}\right)\)
\(=\frac{1}{4}.\left(\frac{1}{5}-\frac{1}{9}+\frac{1}{9}-\frac{1}{13}+.......+\frac{1}{100}-\frac{1}{104}\right)\)
\(=\frac{1}{4}.\left(\frac{1}{5}-\frac{1}{104}\right)\)
\(=\frac{1}{4}.\frac{99}{520}=\frac{99}{2080}\)
1 1/5 x 1 1/6 x 1 1/7 x ... x 1 1/2006
= 6/5 x 7/6 x 8/7 x ... 2007/2006
= 1/5 x 1/2006
= 1/10030
Mình ko chắc đâu bạn! Nhưng mình vẫn chúc bạn hok tốt nha!
Bạn Crystal ơi, làm thế nào mà bạn ra được \(\frac{1}{5}\)vậy ạ?
gạch tất cả số 5, 9, 13
là bằng 4.x/1 + 4.x/17
rồi gợi ý thế thôi nhé
\(\frac{4.x}{1.5}+\frac{4.x}{5.9}+\frac{4.x}{9.13}+\frac{4.x}{13.17}=16\)
\(x.\left(\frac{4}{1.5}+\frac{4}{5.9}+\frac{4}{9.13}+\frac{4}{13.17}\right)=16\)
\(x.\left(1-\frac{1}{5}+\frac{1}{5}-\frac{1}{9}+\frac{1}{9}-\frac{1}{13}+\frac{1}{13}-\frac{1}{17}\right)=16\)
\(x.\left(1-\frac{1}{17}\right)=16\)
\(x.\frac{16}{17}=16\Rightarrow x=16:\frac{16}{17}=16.\frac{17}{16}\)
\(\Rightarrow x=17\)
\(\frac{1}{6}+\frac{1}{12}+\frac{1}{20}+...+\frac{1}{x\left(x+1\right)}=\frac{2011}{4026}\)
\(\Leftrightarrow\frac{1}{2.3}+\frac{1}{3.4}+\frac{1}{4.5}+...+\frac{1}{x\left(x+1\right)}=\frac{2011}{4026}\)
\(\Leftrightarrow\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+....+\frac{1}{x}-\frac{1}{x+1}=\frac{2011}{4026}\)
\(\Leftrightarrow\frac{1}{2}-\frac{1}{x+1}=\frac{2011}{4026}\)
\(\Leftrightarrow\frac{1}{x+1}=\frac{1}{2}-\frac{2011}{4026}\)
\(\Leftrightarrow\frac{1}{x+1}=\frac{1}{2013}\)
\(\Rightarrow x+1=2013\)
\(\Rightarrow x=2012\)
Vậy x = 2012
\(\frac{2011x2011x20102010-2010x2010x20112011}{2011x2010x20092009}\)
\(=\frac{2011x2011x2010x10001-2010x2010x2011x10001}{2011x2010x2009x10001}\)
\(=\frac{2011x2010x10001\left(2011-2010\right)}{2011x2010x2009x10001}\)
\(=\frac{2011x2010x10001}{2011x2010x2009x10001}\)
= 1/2009
Đ?S=4,487228075
hk tốt!!!