Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
1x2/1+2 + ... + 1x2x ... x 999x1000/1+2+ ... +1000
= 1 + ... + 1
= 1 x 1000
= 1000
đặt A=\(\frac{1}{1.2}+\frac{1}{2.3}+\frac{1}{3.4}+\frac{1}{4.5}+...+\frac{1}{999.1000}+1\)
\(=1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+...+\frac{1}{999}-\frac{1}{1000}+1\)
\(=1-\frac{1}{1000}+1\)
\(=\frac{1999}{1000}\)
\(1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}.................-\frac{1}{100}+1=1-\frac{1}{100}+1=2-\frac{1}{100}=\frac{199}{100}\)
= \(\frac{1x1x1}{1x2x4}x\frac{2.2.1}{1.1.2.2}=\frac{1}{8}.1=\frac{1}{8}\)
=1X2X3/1X2X3X4X2= 1/8 =3X2X2X2X5/3X2X2X5X2= 1/1
=1/8X1/1=1/8
\(\frac{1.2.6.4.6.4.5.2}{2.3.6.8.6.2.2.2.8.10}=\frac{1}{96}\)
Mk có trả lời câu này trên h rồi, bạn cứ vào link này để xem nhé! Nếu bạn thấy sai chỗ nào thì mong bạn giúp đỡ...
Link: https://h.vn/hoi-dap/question/633709.html
\(\left(\frac{1}{1\cdot2}+\frac{1}{2\cdot3}+....+\frac{1}{2009\cdot2010}\right)\cdot x=2009\)
\(\left(1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+...+\frac{1}{2009}-\frac{1}{2010}\right)\cdot x=2009\)
\(\left(1-\frac{1}{2010}\right)\cdot x=2009\)
\(\frac{2009}{2010}\cdot x=2009\)
\(x=2009:\frac{2009}{2010}\)
\(x=2010\)
\(\frac{1}{8}=12,5\%\) ; \(\frac{1}{16}=6,25\%\) ; \(\frac{1}{2}=50\%\) ; \(\frac{1}{4}=25\%\)
Thay vào trên mà tính.
= \(1+\left(\frac{3\left(1x2+2x4x2\right)}{3\left(5+5x3x25\right)}+1\right)-\left(1+\frac{18}{54}\right)-1\) = \(\frac{18}{380}-\frac{18}{54}\)
Đề bài có vẻ bất ổn em ơi?