Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(=\left(\frac{-1}{2}\right)\times\left(\frac{-2}{3}\right)\times...\times\left(\frac{-2002}{2003}\right)\)
\(=\frac{\left(-1\right)\times\left(-2\right)\times...\times\left(-2002\right)}{2\times3\times...\times2003}\)
\(=\frac{1}{2003}\)
Câu a đề thiếu vế phải rồi bạn
b: \(\Leftrightarrow x\cdot0+1=0\)
=>0x+1=0(vô lý)
ta có x(x + 2) = 0
=> x = 0
x + 2 = 0
=> x = 0
x = -2
Vậy x = 0 hoặc x = -2
Ta có : (x + 1)(x - 2) = 0
\(\Leftrightarrow\orbr{\begin{cases}x+1=0\\x-2=0\end{cases}}\)
\(\Leftrightarrow\orbr{\begin{cases}x=-1\\x=2\end{cases}}\)
a)\(\frac{1}{4}-\frac{1}{3}x=\frac{2}{5}-\frac{3}{2}x\)
\(\Leftrightarrow\)\(\frac{15-20x}{60}=\frac{24-90x}{60}\)
\(\Leftrightarrow15-20x=24-90x\)
\(\Leftrightarrow-20x+90x=24-15\)
\(\Leftrightarrow70x=9\)
\(\Leftrightarrow x=\frac{9}{70}\)
c) (1/2-1/6)*3^x+4-4*3^x=3^16-4*3^13
=1/3*3^x*3^4-4*3^x=3^13*3^3-4*3^13
=27*3^x-4*3^x=3^13*(27-4)
=3^x*(27-4)=3^13*(27-4)
=>x=13
Mình sẽ trình bày rõ hơn ở (2) nha
Ta có:
\(\frac{2}{x+1}=\frac{3}{2y-3}\)
Áp dụng tính chất dãy tỉ số bằng nhau ta có:
\(\frac{2}{x+1}=\frac{3}{2y-3}\) = \(\frac{2-3}{\left(x+1\right)-\left(2y-3\right)}=\frac{-1}{x+1-2y+3}=\frac{-1}{x-2y+4}\)
(Vì trước ngoặc của 2y - 3 là dấu trừ nên khi phá ngoặc thì nó sẽ trở thành dấu cộng.Đây là quy tắc phá ngoặc mà bạn đã được học ở lớp 6 đó)
Ahaha, mình cũng học rồi mà quên mất, cảm giác hiểu ra cái này khó diễn tả thật cậu ạ. Vui chả nói nên lời :))
À quên cảm ơn cậu nhé :^)
Ta có:
\(\left(\frac{1}{2}-1\right).\left(\frac{1}{3}-1\right).\left(\frac{1}{4}-1\right).....\left(\frac{1}{2003}-1\right)\)
\(=\left(-\frac{1}{2}\right).\left(-\frac{2}{3}\right).\left(-\frac{3}{4}\right).....\left(-\frac{2002}{2003}\right)\)
\(=\frac{-1.-2.-3......-2002}{2.3.4.....2003}=\frac{1}{2003}\)
\(\left(\frac{1}{2}-1\right)\cdot\left(\frac{1}{3}-1\right)\cdot\left(\frac{1}{4}-1\right)\cdot......\cdot\left(\frac{1}{2003}-1\right)\)
=\(\frac{1}{2}\cdot\frac{2}{3}\cdot\frac{3}{4}\cdot.........\cdot\frac{2002}{2003}\) = \(\frac{1}{2003}\)