Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(9\frac{2}{9}+\frac{2}{3}+7\frac{7}{9}\)
\(=9+\frac{2}{9}+\frac{2}{3}+7+\frac{7}{9}\)
\(=\left(9+7\right)+\left(\frac{2}{9}+\frac{7}{9}\right)+\frac{2}{3}\)
\(=16+1+\frac{2}{3}\)
\(=17+\frac{2}{3}\)
\(=\frac{51}{3}+\frac{2}{3}\)
\(=\frac{53}{3}\)
\(\frac{5}{9}.\frac{10}{11}+\frac{5}{9}.\frac{14}{11}-\frac{5}{9}.\frac{15}{11}\)
\(=\frac{5}{9}\left(\frac{10}{11}+\frac{14}{11}-\frac{15}{11}\right)\)
\(=\frac{5}{9}.\frac{9}{11}\)
\(=\frac{5}{11}\)
a) Ta có: \(15\frac{3}{13}-\left(3\frac{4}{7}+8\frac{3}{13}\right)\)
\(=15+\frac{3}{13}-3-\frac{4}{7}-8-\frac{3}{13}\)
\(=4-\frac{4}{7}=\frac{24}{7}\)
b) Ta có: \(\left(7\frac{4}{9}+4\frac{7}{11}\right)-3\frac{4}{9}\)
\(=7+\frac{4}{9}+4+\frac{7}{11}-3-\frac{4}{9}\)
\(=8+\frac{7}{11}=\frac{95}{11}\)
c) Ta có: \(\frac{-7}{9}\cdot\frac{4}{11}+\frac{-7}{9}\cdot\frac{7}{11}+5\frac{7}{9}\)
\(=\frac{-7}{9}\cdot\frac{4}{11}+\frac{-7}{9}\cdot\frac{7}{11}+\frac{-7}{9}\cdot\frac{-52}{7}\)
\(=\frac{-7}{9}\cdot\left(\frac{4}{11}+\frac{7}{11}-\frac{52}{7}\right)\)
\(=\frac{-7}{9}\cdot\frac{45}{-7}=5\)
d) Ta có: \(50\%\cdot1\frac{1}{3}\cdot10\cdot\frac{7}{35}\cdot0.75\)
\(=\frac{1}{2}\cdot\frac{4}{3}\cdot10\cdot\frac{7}{35}\cdot\frac{3}{4}\)
\(=5\cdot\frac{7}{35}=1\)
e) Ta có: \(\frac{3}{1\cdot4}+\frac{3}{4\cdot7}+\frac{3}{7\cdot10}+...+\frac{3}{40\cdot43}\)
\(=1-\frac{1}{4}+\frac{1}{4}-\frac{1}{7}+\frac{1}{7}-\frac{1}{10}+...+\frac{1}{40}-\frac{1}{43}\)
\(=1-\frac{1}{43}=\frac{43}{43}-\frac{1}{43}\)
\(=\frac{42}{43}\)
\(a,\frac{0,75-0,6+\frac{3}{7}+\frac{3}{13}}{2,75-2,2+\frac{11}{7}+\frac{11}{13}}\)
\(=\frac{\frac{3}{4}-\frac{3}{5}+\frac{3}{7}+\frac{3}{13}}{\frac{11}{4}-\frac{11}{5}+\frac{11}{7}+\frac{11}{13}}\)
\(=\frac{3\left[\frac{1}{4}-\frac{1}{5}+\frac{1}{7}+\frac{1}{13}\right]}{11\left[\frac{1}{4}-\frac{1}{5}+\frac{1}{7}+\frac{1}{13}\right]}=\frac{3}{11}\)
Câu b tương tự
#)Giải :
b)\(\frac{5}{9}:\left(\frac{1}{3}+\frac{1}{4}\right)+\frac{5}{9}:\left(\frac{1}{9}+\frac{2}{3}\right)\)
\(=\frac{5}{9}:\frac{1}{3}+\frac{5}{9}:\frac{1}{4}+\frac{5}{9}:\frac{1}{9}+\frac{5}{9}:\frac{2}{3}\)
\(=\frac{5}{9}:\left(\frac{1}{3}+\frac{1}{4}+\frac{1}{9}+\frac{2}{3}\right)\)
\(=\frac{5}{9}:\frac{49}{36}\)
\(=\frac{20}{49}\)
\(A=21\frac{4}{11}-\left(1\frac{3}{5}+7\frac{4}{11}\right)\)
\(A=\frac{235}{11}-\left(\frac{8}{5}+\frac{81}{11}\right)\)
\(A=\left(\frac{235}{11}-\frac{81}{11}\right)+\frac{8}{5}\)
\(A=\frac{154}{11}+\frac{8}{5}\)
\(\Rightarrow A=\frac{78}{5}\)
\(B=\left(7\frac{8}{9}+2\frac{3}{13}\right)-\left(4\frac{8}{9}-7\frac{10}{13}\right)\)
\(B=\left(\frac{71}{9}+\frac{29}{13}\right)-\left(\frac{44}{9}-\frac{101}{13}\right)\)
\(B=\left(\frac{71}{9}-\frac{44}{9}\right)+\left(\frac{29}{13}-\frac{101}{13}\right)\)
\(B=\frac{27}{9}+\frac{-72}{13}\)
\(B=3+\frac{-72}{13}\)
\(\Rightarrow B=\frac{-33}{13}\)
P/s: Hoq chắc :v
\(\frac{\frac{2}{5}-\frac{2}{9}+\frac{2}{11}}{\frac{7}{5}-\frac{7}{9}+\frac{7}{11}}:\frac{\frac{1}{3}-\frac{1}{4}+\frac{1}{5}}{\frac{7}{6}-\frac{7}{8}+\frac{7}{10}}\)
\(=\frac{2\left(\frac{1}{5}-\frac{1}{9}+\frac{1}{11}\right)}{7\left(\frac{1}{5}-\frac{1}{9}+\frac{1}{11}\right)}:\frac{\frac{1}{3}-\frac{1}{4}+\frac{1}{5}}{\frac{7}{2}\left(\frac{1}{3}-\frac{1}{4}+\frac{1}{5}\right)}\)
\(=\frac{2}{7}:\frac{1}{\frac{7}{2}}=\frac{2}{7}:\frac{2}{7}=1\)
\(bai1:a,\frac{3}{7}\cdot\frac{-5}{9}+\frac{4}{9}\cdot\frac{3}{7}-\frac{3}{7}\cdot\frac{8}{9}\)
\(< =>\frac{-15}{63}+\frac{12}{63}-\frac{24}{63}\)
\(< =>\frac{-15+12-24}{63}\)
\(< =>\frac{-3}{7}\)
\(b,1\frac{13}{15}\cdot0,75-\left(\frac{11}{20}+25\%\right):\frac{7}{5}\)
\(< =>\frac{28}{15}\cdot\frac{3}{4}-\left(\frac{11}{20}+\frac{1}{4}\right):\frac{7}{5}\)
\(< =>\frac{7}{5}-\frac{4}{5}:\frac{7}{5}\)
\(< =>\frac{7}{5}-\frac{4}{7}\)
\(< =>\frac{29}{35}\)
\(bai2:\)
\(a,\frac{-3}{4}\cdot x-\frac{4}{10}=\frac{1}{5}\)
\(< =>\frac{-3}{4}\cdot x=\frac{1}{5}+\frac{4}{10}\)
\(< =>\frac{-3}{4}\cdot x=\frac{3}{5}\)
\(< =>x=\frac{3}{5}:\frac{-3}{4}\)
\(< =>x=\frac{-4}{5}\)
\(b,3\left(x-\frac{1}{3}\right)+\frac{1}{3}x=\frac{1}{19}:\frac{12}{19}\)
\(< =>3\left(x-\frac{1}{3}\right)+\frac{1}{3}x=\frac{1}{12}\)
\(< =>\left[3\left(x-\frac{1}{3}\right)\right]=\frac{1}{12}< =>x-\frac{1}{3}=\frac{1}{12}:3=\frac{1}{36}=>x=\frac{1}{36}+\frac{1}{3}=>x=\frac{13}{36}\)
\(< =>\left[\frac{1}{3}\cdot x\right]=\frac{1}{12}< =>x=\frac{1}{12}:\frac{1}{3}=>x=\frac{1}{4}\)
Bài 1:
a)\(\frac{3}{7}.\frac{-5}{9}+\frac{4}{9}.\frac{3}{7}-\frac{3}{7}.\frac{8}{9}\) b,\(1\frac{13}{15}.0,75-\left(\frac{11}{20}+25\%\right):\frac{7}{5}\)
\(=\frac{3}{7}.(\frac{-5}{9}+\frac{4}{9}-\frac{8}{9})\) \(=\frac{28}{15}.\frac{3}{4}-\left(\frac{11}{20}+\frac{5}{20}\right):\frac{7}{5}\)
\(=\frac{3}{7}.\frac{-9}{9}\) \(=\frac{7}{5}-\frac{4}{5}:\frac{7}{5}\)
\(=\frac{-3}{7}\) \(=\frac{7}{5}-\frac{4}{7}\)
\(=\frac{29}{35}\)
Bài 2:
a)\(\frac{-3}{4}x-\frac{4}{10}=\frac{1}{5}\) b,\(3\left(x-\frac{1}{3}\right)+\frac{1}{3}x=\frac{1}{19}:\frac{12}{19}\)
\(\frac{-3}{4}x\) \(=\frac{1}{5}+\frac{4}{10}\) \(3\left(x-\frac{1}{3}\right)+\frac{1}{3}x=\frac{1}{12}\)
\(\frac{-3}{4}x\) \(=\frac{3}{5}\) \(\left(x.3-\frac{1}{3}.3\right)+\frac{1}{3}x=\frac{1}{12}\)
\(x\) \(=\frac{3}{5}:\frac{-3}{4}\) \(\left(x.3-1\right)+\frac{1}{3}x=\frac{1}{12}\)
\(x\) \(=\frac{4}{-5}\) \(x.\left(3+\frac{1}{3}\right)-1=\frac{1}{12}\)
\(x.\left(3+\frac{1}{3}\right)=\frac{1}{12}+1\)
\(x.\frac{10}{3}=\frac{13}{12}\)
\(x=\frac{13}{12}:\frac{10}{3}\)
\(x=\frac{13}{40}\)
Đặt tử = A.Ta có:
\(A=0,75+\frac{3}{7}+\frac{3}{11}=\frac{3}{4}+\frac{3}{7}+\frac{3}{11}\)
\(=3\left(\frac{1}{4}+\frac{1}{7}+\frac{1}{11}\right)\)
Đặt mẫu = B.Ta có:
\(B=2\frac{1}{4}+\frac{9}{11}+\frac{9}{7}=\frac{9}{4}+\frac{9}{11}+\frac{9}{7}\)
\(=9\left(\frac{1}{4}+\frac{1}{11}+\frac{1}{7}\right)\)
Thay A và B vào ta đc: \(\frac{A}{B}=\frac{3\left(\frac{1}{4}+\frac{1}{7}+\frac{1}{11}\right)}{9\left(\frac{1}{4}+\frac{1}{11}+\frac{1}{7}\right)}=\frac{3}{9}=\frac{1}{3}\)