Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(A=\frac{3}{2}\times\left(\frac{1}{13\times11}+\frac{1}{13\times15}+\frac{1}{15\times17}+.....+\frac{1}{97\times99}\right)\)
\(A=\frac{3}{2}\times\left(\frac{1}{11}-\frac{1}{13}+\frac{1}{13}-\frac{1}{15}+\frac{1}{15}-\frac{1}{17}+......+\frac{1}{97}-\frac{1}{99}\right)\)
\(A=\frac{3}{2}\times\left(\frac{1}{11}-\frac{1}{99}\right)\)
\(A=\frac{3}{2}\times\frac{8}{99}\)
\(A=\frac{4}{33}\)
b] \(\frac{A}{5}=\frac{4}{31.35}+\frac{6}{35.41}+\frac{9}{41.50}+\frac{7}{50.57}\)
\(\frac{A}{5}=\frac{1}{31}-\frac{1}{35}+\frac{1}{35}-\frac{1}{41}+\frac{1}{41}-\frac{1}{50}+\frac{1}{50}-\frac{1}{57}\)
\(\frac{A}{5}=\frac{1}{31}-\frac{1}{57}\)
\(\Rightarrow A=5\left(\frac{1}{31}-\frac{1}{57}\right)=\frac{130}{1767}\)
c] Ta đặt \(\left(8n+5,6n+4\right)=d\)
\(\Rightarrow\frac{8n+5\div d}{6n+4\div d}\Rightarrow4\times\left(6n+4\right)-3\times\left(8n+5\right)=\left(24n+16\right)-\left(24n+15\right):d\)\(\Rightarrow d=1\)
Vậy \(\frac{8n+5}{6n+4}\)là phân số tối giản
(x+2)/17+(x+4)/15+(x+6)/13=(x+8)/11+(x+10)/9+(x+12)/7
=>(x+2+17)/17+(x+4+15)/15+(x+6+13)/13=(x+8+11)/11+(x+10+9)/9+(x+12+7)/7
=>(x+19)/17+(x+19)/15+(x+19)/13=(x+19)/11+(x+19)/9+(x+19)/7
=>(x+19)/17+(x+19)/15+(x+19)/13-(x+19)/11-(x+19)/9-(x+19)/7=0
=>(x+19)*(1/17+1/15+1/13-1/11-1/9-1/7)=0
=>x+19=0
=>x=19
áp dụng tc tỉ lệ thức ta có :
\(\Leftrightarrow\frac{671x+2804}{3315}=\frac{239x+2462}{693}\Rightarrow\left(671x+2804\right)693=3315\left(239x+2462\right)\)
=>(671x+2804)693=693(671x+2804) (VT)
<=>693(671x+2804)=3315(239x+2462)
=>465003x+1943172=792285x+8161530
=>-327282x=621835
=>x=621835:(-327282)
=>x=-19
\(a)\frac{1}{3}+\frac{-2}{5}+\frac{1}{6}+\frac{-1}{5}\le x< \frac{-3}{4}+\frac{2}{7}+\frac{-1}{4}+\frac{3}{5}+\frac{5}{7}\)
\(\Rightarrow\frac{1}{3}+\frac{1}{6}+\frac{-2}{5}+\frac{-1}{5}\le x< \frac{-3}{4}+\frac{-1}{4}+\frac{2}{7}+\frac{5}{7}+\frac{3}{5}\)
\(\Rightarrow\frac{2}{6}+\frac{1}{6}+\frac{-3}{5}\le x< -1+1+\frac{3}{5}\)
\(\Rightarrow\frac{1}{2}+\frac{-3}{5}\le x< \frac{3}{5}\)
\(\Rightarrow\frac{-1}{10}\le x< \frac{6}{10}\)
\(\Rightarrow-1\le x< 6\)
\(\Rightarrow x\in\left\{-1;0;1;2;3;4;5\right\}\)
Bài b tương tự
\(\frac{11}{9}.\frac{15}{4}-\frac{11}{4}.\frac{7}{9}-\frac{11}{9}.\frac{5}{4}\)
=\(\frac{11}{9}.\frac{15}{4}-\frac{11}{9}.\frac{7}{4}-\frac{11}{9}.\frac{5}{4}\)
=\(\frac{11}{9}\).\(\left(\frac{15}{4}-\frac{7}{4}-\frac{5}{4}\right)\)
=\(\frac{11}{9}\).\(\frac{3}{4}\)
=\(\frac{11.3}{3.3.4}\)
=\(\frac{11}{12}\)
Chúc bn học tốt
Đặt \(A=\frac{15+\frac{15}{7}-\frac{15}{11}+\frac{15}{2009}-\frac{15}{13}}{\frac{4}{2009}-\frac{4}{13}+\frac{4}{7}-\frac{4}{11}+4}\)
\(=\frac{15\left(\frac{1}{7}-\frac{1}{11}+\frac{1}{2009}-\frac{1}{13}\right)}{4\left(\frac{1}{7}-\frac{1}{11}+\frac{1}{2009}-\frac{1}{13}\right)}\)
\(=\frac{15}{4}\)
Đặt \(B=\frac{5\cdot2010-1996}{14+4\cdot2010}\)
\(=\frac{5\left(1996+4\right)-1996}{14+4\cdot2010}\)
\(=\frac{5\cdot1996+20-1996}{14+4\left(1996+4\right)}\)
\(=\frac{4\cdot1996+20}{4\cdot1996+30}\)
\(\Rightarrow A\cdot B=\frac{4\cdot1996+20}{4\cdot1996+30}\cdot\frac{15}{4}=\frac{15\cdot4\left(1996+5\right)}{4\left(4\cdot1996+30\right)}=\frac{15\left(1996+5\right)}{4\cdot1996+30}=\frac{30015}{8004}\)
mặc dầu ko khoa học lắm nhưng mình thấy cũng được đấy
\(\frac{-15}{4}\times\frac{9}{11}+\frac{15}{4}\times\frac{15}{11}-\frac{15}{4}\times\frac{6}{11}\)
\(=\frac{15}{4}\times\left(\frac{-9}{11}+\frac{15}{11}-\frac{6}{11}\right)\)
\(=\frac{15}{4}\times0\)
\(=0\)
\(=\frac{15}{4}\times\left(-\frac{9}{11}\right)+\frac{15}{4}\times\frac{15}{11}+\frac{15}{4}\times\left(-\frac{6}{11}\right)\)
\(=\frac{15}{4}\times\left(-\frac{9}{11}+\frac{15}{11}+\left(-\frac{6}{11}\right)\right)\)
\(=\frac{15}{4}\times0\)
\(=0\)