Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) \(\dfrac{30\times25\times7\times8}{75\times8\times12\times14}=\dfrac{3\times2\times5\times25\times7\times8}{25\times3\times8\times3\times4\times2\times7}=\dfrac{5}{3\times4}=\dfrac{5}{12}\)
b) \(\dfrac{8\times3\times4}{16\times3}=\dfrac{8\times3\times2\times2}{8\times2\times3}=2\)
c) \(\dfrac{4\times5\times6}{3\times10\times8}=\dfrac{4\times5\times3\times2}{3\times5\times2\times4\times2}=\dfrac{1}{2}\)
M = (345 x (6789 + 3456 - 245)/690) x 99/100 x 98/99 x...x 2/3 x 1/2
M = ((345 x 10000)/690) x 99/2 (rút gọn)
M = (10000/2) x 99/2
M = 5000 x 99/2
M = 247500
Ok nha
\(\frac{1}{1\times2}+\frac{1}{2\times3}+\frac{1}{3\times4}+....+\frac{1}{98\times99}+\frac{1}{99\times100}\)
\(=\frac{2-1}{1\times2}+\frac{3-2}{2\times3}+\frac{4-3}{3\times4}+....+\frac{99-98}{98\times99}+\frac{100-99}{99\times100}\)
\(=1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+....+\frac{1}{98}-\frac{1}{99}+\frac{1}{99}-\frac{1}{100}\)
\(=1-\frac{1}{100}\)
\(=\frac{99}{100}\)
\(\frac{1}{1\cdot2}+\frac{1}{2\cdot3}+\frac{1}{3\cdot4}+...+\frac{1}{98\cdot99}+\frac{1}{99\cdot100}\)
\(=1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+...+\frac{1}{99}-\frac{1}{100}\)
\(=1-\frac{1}{100}\)
\(=\frac{99}{100}\)
\(a,\frac{3\times4\times7}{12\times8\times9}\)
\(=\frac{3\times4\times7}{3\times4\times8\times9}\)
\(=\frac{7}{72}\)
\(b,\frac{4\times5\times6}{12\times10\times8}\)
\(=\frac{4\times5\times3\times2}{4\times3\times5\times2\times8}\)
\(=\frac{1}{8}\)
\(c,\frac{5\times6\times7\times9}{12\times7\times27}\)
\(=\frac{5\times6\times7\times9}{6\times2\times7\times9\times3}\)
\(=\frac{5}{6}\)
\(d,\frac{5\times6\times7}{12\times14\times15}\)
\(=\frac{5\times6\times7}{6\times2\times7\times2\times5\times3}\)
\(=\frac{1}{12}\)
a) \(\frac{3\times4\times7}{12\times8\times9}=\frac{3\times4\times7}{3\times4\times8\times9}=\frac{7}{8\times9}=\frac{7}{72}\)
b) \(\frac{4\times5\times6}{12\times10\times8}=\frac{4\times5\times6}{6\times2\times2\times5\times4\times2}=\frac{1}{2\times2\times2}=\frac{1}{8}\)
c) \(\frac{5\times6\times7\times9}{12\times7\times27}=\frac{5\times6\times9}{12\times27}=\frac{5\times6\times9}{2\times6\times3\times9}=\frac{5}{2\times3}=\frac{5}{6}\)
d) \(\frac{5\times6\times7}{12\times14\times15}=\frac{5\times6\times7}{2\times6\times2\times7\times3\times5}=\frac{1}{2\times2\times3}=\frac{1}{12}\)
a) $\frac{{14}}{{18}}:\frac{8}{9} = \frac{7}{9}:\frac{8}{9} = \frac{7}{9} \times \frac{9}{8} = \frac{{63}}{{72}} = \frac{7}{8}$
b) $\frac{9}{6}:\frac{3}{{10}} = \frac{3}{2}:\frac{3}{{10}} = \frac{3}{2} \times \frac{{10}}{3} = \frac{{30}}{6} = 5$
c) $\frac{4}{5}:\frac{{10}}{{15}} = \frac{4}{5}:\frac{2}{3} = \frac{4}{5} \times \frac{3}{2} = \frac{{12}}{{10}} = \frac{6}{5}$
d) $\frac{1}{6}:\frac{{21}}{9} = \frac{1}{6}:\frac{7}{3} = \frac{1}{6} \times \frac{3}{7} = \frac{3}{{42}} = \frac{1}{{14}}$
\(B=\dfrac{1}{3}\left(\dfrac{3}{1\cdot4}+\dfrac{3}{4\cdot7}+...+\dfrac{3}{97\cdot100}\right)\)
\(=\dfrac{1}{3}\left(1-\dfrac{1}{4}+\dfrac{1}{4}-\dfrac{1}{7}+...+\dfrac{1}{97}-\dfrac{1}{100}\right)\)
\(=\dfrac{1}{3}\left(1-\dfrac{1}{100}\right)\)
\(=\dfrac{1}{3}\cdot\dfrac{99}{100}=\dfrac{33}{100}\)
\(3\times B=\dfrac{3}{1\times4}+\dfrac{3}{4\times7}+....+\dfrac{3}{97\times100}\)
\(3\times B=1-\dfrac{1}{4}+\dfrac{1}{4}-\dfrac{1}{7}+...+\dfrac{1}{97}-\dfrac{1}{100}\)
\(3\times B=1-\dfrac{1}{100}=\dfrac{99}{100}\)
\(B=\dfrac{33}{100}\)