Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) \(\dfrac{30\times25\times7\times8}{75\times8\times12\times14}=\dfrac{3\times2\times5\times25\times7\times8}{25\times3\times8\times3\times4\times2\times7}=\dfrac{5}{3\times4}=\dfrac{5}{12}\)
b) \(\dfrac{8\times3\times4}{16\times3}=\dfrac{8\times3\times2\times2}{8\times2\times3}=2\)
c) \(\dfrac{4\times5\times6}{3\times10\times8}=\dfrac{4\times5\times3\times2}{3\times5\times2\times4\times2}=\dfrac{1}{2}\)
a) $\frac{7}{2} \times \frac{1}{6} = \frac{7}{{12}}$
b) $\frac{8}{{11}} \times 4 = \frac{{32}}{{11}}$
c) $\frac{8}{9}:\frac{2}{5} = \frac{8}{9} \times \frac{5}{2} = \frac{{40}}{{18}} = \frac{{20}}{9}$
d) $\frac{5}{8}:7 = \frac{5}{8} \times \frac{1}{7} = \frac{5}{{56}}$
D=1/1-1/2+1/2-1/3+1/3-1/4+.....+1/2022-1/2023
=1-1/2023=2022/2023
\(a,\left(\dfrac{31}{35}-\dfrac{4}{7}\right)\times\dfrac{8}{7}:2\\ =\left(\dfrac{31}{35}-\dfrac{4\times5}{35}\right)\times\dfrac{8}{7}:2\\ =\dfrac{11}{35}\times\dfrac{8}{7}:2\\ =\dfrac{88}{245}:2\\ =\dfrac{44}{245}\\ b,\left(1-\dfrac{1}{2}\right)\times\left(1-\dfrac{1}{3}\right)\times\left(1-\dfrac{1}{4}\right)\times\left(1-\dfrac{1}{5}\right)\\ =\left(\dfrac{2-1}{2}\right)\times\left(\dfrac{3-1}{3}\right)\times\left(\dfrac{4-1}{4}\right)\times\left(\dfrac{5-1}{5}\right)\\ =\dfrac{1}{2}\times\dfrac{2}{3}\times\dfrac{3}{4}\times\dfrac{4}{5}\\ =\dfrac{1}{3}\times\dfrac{3}{4}\times\dfrac{4}{5}\\ =\dfrac{1}{4}\times\dfrac{4}{5}=\dfrac{1}{5}\)
a, ( \(\dfrac{31}{35}\) - \(\dfrac{4}{7}\)) \(\times\) \(\dfrac{8}{7}\): 2
= \(\left(\dfrac{31}{35}-\dfrac{20}{35}\right)\) \(\times\) \(\dfrac{8}{7}\) : 2
= \(\dfrac{11}{35}\) \(\times\) \(\dfrac{8}{7}\) \(\times\) \(\dfrac{1}{2}\)
= \(\dfrac{44}{35}\) \(\times\) \(\dfrac{4}{7}\)
= \(\dfrac{44}{245}\)
b, ( 1 - \(\dfrac{1}{2}\)) \(\times\) ( 1 - \(\dfrac{1}{3}\)) \(\times\) ( 1 - \(\dfrac{1}{4}\)) \(\times\) ( 1 - \(\dfrac{1}{5}\))
= \(\dfrac{1}{2}\) \(\times\) \(\dfrac{2}{3}\) \(\times\) \(\dfrac{3}{4}\) \(\times\) \(\dfrac{4}{5}\)
= \(\dfrac{1}{5}\) \(\times\) \(\dfrac{2\times3\times4}{2\times3\times4}\)
= \(\dfrac{1}{5}\)
a/\(\left(\dfrac{7}{9}\times\dfrac{9}{7}\right)\times\dfrac{25}{28}\)
\(=1\times\dfrac{25}{28}\)
\(=\dfrac{25}{28}\)
b/\(\dfrac{4}{7}\times\dfrac{17}{18}\times\dfrac{7}{4}\times\dfrac{18}{17}\)
\(=\left(\dfrac{4}{7}\times\dfrac{7}{4}\right)\times\left(\dfrac{17}{18}\times\dfrac{18}{17}\right)\)
\(=1\times1\)
\(=1\)
a: \(\dfrac{5}{6}\cdot7=\dfrac{5\cdot7}{6}=\dfrac{35}{6}\)
b: \(\dfrac{7}{10}\cdot3=\dfrac{7\cdot3}{10}=\dfrac{21}{10}\)
c: \(5\cdot\dfrac{4}{21}=\dfrac{5\cdot4}{21}=\dfrac{20}{21}\)
d: \(2\cdot\dfrac{5}{9}=\dfrac{2\cdot5}{9}=\dfrac{10}{9}\)
\(B=\dfrac{1}{3}\left(\dfrac{3}{1\cdot4}+\dfrac{3}{4\cdot7}+...+\dfrac{3}{97\cdot100}\right)\)
\(=\dfrac{1}{3}\left(1-\dfrac{1}{4}+\dfrac{1}{4}-\dfrac{1}{7}+...+\dfrac{1}{97}-\dfrac{1}{100}\right)\)
\(=\dfrac{1}{3}\left(1-\dfrac{1}{100}\right)\)
\(=\dfrac{1}{3}\cdot\dfrac{99}{100}=\dfrac{33}{100}\)
\(3\times B=\dfrac{3}{1\times4}+\dfrac{3}{4\times7}+....+\dfrac{3}{97\times100}\)
\(3\times B=1-\dfrac{1}{4}+\dfrac{1}{4}-\dfrac{1}{7}+...+\dfrac{1}{97}-\dfrac{1}{100}\)
\(3\times B=1-\dfrac{1}{100}=\dfrac{99}{100}\)
\(B=\dfrac{33}{100}\)