\(\frac{1}{1.2}+\frac{2}{1.7}+\fra...">
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

5 tháng 5 2019

\(\frac{-7}{11}.\frac{11}{19}+\frac{-7}{11}.\frac{8}{19}+\frac{-4}{11}\)

\(=\frac{-7}{11}.\left(\frac{11}{19}+\frac{8}{19}\right)+\frac{-4}{11}\)

\(=\frac{-7}{11}.1+\frac{-4}{11}\)

\(=\frac{-7}{11}+\frac{-4}{11}=\frac{-11}{11}=-1\)

~ Hok tốt ~

5 tháng 5 2019

Đặt \(B=\frac{1}{1.2}+\frac{1}{2.3}+\frac{1}{3.4}+...+\frac{1}{2018.2019}\)

\(\Rightarrow B=1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+...+\frac{1}{2018}-\frac{1}{2019}\)

\(\Rightarrow B=1-\frac{1}{2019}\)

\(\Rightarrow B=\frac{2018}{2019}\)

23 tháng 1 2020

Đợi hơi lâu tí nha !

23 tháng 1 2020

Câu 3 : \(2+4+6+.........+2n=156\)

\(\Leftrightarrow2\left(1+2+3+.....+n\right)=156\)

\(\Leftrightarrow1+2+3+.........+n=78\)

\(\Leftrightarrow\frac{n\left(n+1\right)}{2}=78\)\(\Leftrightarrow n\left(n+1\right)=156=12.13\)\(\Leftrightarrow n=12\)

Vậy \(n=12\)

25 tháng 8 2020

\(A=\frac{1}{2}+\frac{1}{2^2}+\frac{1}{2^3}+...+\frac{1}{2^{99}}\)

\(< =>2A=1+\frac{1}{2}+\frac{1}{2^2}+...+\frac{1}{2^{98}}\)

\(< =>2A-A=1-\frac{1}{2^{99}}< =>A=1-\frac{1}{2^{99}}\)

25 tháng 8 2020

\(A=\frac{1}{2}+\frac{1}{2^2}+\frac{1}{2^3}+...+\frac{1}{2^{99}}\)

\(\Rightarrow2A=1+\frac{1}{2}+\frac{1}{2^2}+...+\frac{1}{2^{98}}\)

\(\Rightarrow2A-A=1-\frac{1}{2^{99}}\)

\(\Rightarrow A=1-\frac{1}{2^{99}}\)

b)=(2/3 +2/7 - 2/28)/(-3/3 -3/7 + 3/28)

=[2(1/3+1/7-1/28)]/[(-3)(1/3+1/7-1/28)]

=2/-3 

=-2/3

30 tháng 4 2019

\(=\frac{-\frac{1}{4}.-\frac{1}{5}}{\frac{5}{9}-\frac{13}{12}}\)

\(=\frac{\frac{1}{20}}{\frac{1}{4}}\)

\(=\frac{1}{20}:\frac{1}{4}\)

\(=\frac{1}{5}\)

7 tháng 5 2018

98B là sao 

7 tháng 5 2018

1/90 nha ban k nha

6 tháng 3 2020

k chép đề

3/2.A=\(\frac{3}{4}+\left(\frac{3}{2}\right)^2+\left(\frac{3}{2}\right)^3+\left(\frac{3}{2}\right)^4+\left(\frac{3}{2}\right)^5+...+\left(\frac{3}{2}\right)^{2013}\)

3/2A-A=(\(\frac{3}{4}+\left(\frac{3}{2}\right)^2+\left(\frac{3}{2}\right)^3+\left(\frac{3}{2}\right)^4+\left(\frac{3}{2}\right)^5+...+\left(\frac{3}{2}\right)^{2013}\)) - (\(\frac{1}{2}+\frac{3}{2}+\left(\frac{3}{2}\right)^2+\left(\frac{3}{2}\right)^3+\left(\frac{3}{2}\right)^4+...+\left(\frac{3}{2}\right)^{2012}\))

1/2 . A =\(\frac{1}{2}+\left(\frac{3}{2}\right)^{2013}\)

A=\(\frac{\frac{1}{2}+\left(\frac{3}{2}\right)^{2013}}{2}\)

B-A=\(\frac{\left(\frac{3}{2}\right)^{2018}}{2}-\)\(\frac{\frac{1}{2}+\left(\frac{3}{2}\right)^{2013}}{2}\)

\(B-A=\frac{\frac{1}{2}}{2}=\frac{1}{2}:2=\frac{1}{4}\)

6 tháng 3 2020

à chết  Nguyễn Thị Hiền  ơi câu cuối mik quên mất

B-A=\(\frac{\frac{-1}{2}}{2}\)

B-A=\(\frac{-1}{4}\) nhé

cám ơn đã đọc