\(A=\frac{2}{3}+\frac{2}{15}+\frac{2}{35}+...+\frac{2}{9215}\)

">
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

3 tháng 4 2015

Ta có:

\(A=\frac{2}{3}+\frac{2}{15}+\frac{2}{35}+...+\frac{2}{9215}\)

\(=\frac{2}{1.3}+\frac{2}{3.5}+\frac{2}{5.7}+...+\frac{2}{95.97}\)

\(=1-\frac{1}{3}+\frac{1}{3}-\frac{1}{5}+\frac{1}{5}-\frac{1}{7}+...+\frac{1}{95}-\frac{1}{97}\)

\(=1-\frac{1}{97}\)

\(=\frac{96}{97}\)

Vậy \(A=\frac{96}{97}\)

8 tháng 8 2017

\(A=\frac{2}{3}+\frac{2}{15}+\frac{2}{35}+...+\frac{2}{9215}\)

\(=\frac{2}{1.3}+\frac{2}{3.5}+\frac{2}{5.7}+...+\frac{2}{95.97}\)

\(=1-\frac{1}{3}+\frac{1}{3}-\frac{1}{5}+\frac{1}{5}-\frac{1}{7}+...+\frac{1}{95}-\frac{1}{97}\)

\(=1-\frac{1}{97}=\frac{96}{97}\)

Chúc bạn hok tốt! :))

9 tháng 10 2015

\(A=\frac{2}{1.3}+\frac{2}{3.5}+\frac{2}{5.7}+...+\frac{2}{19.21}\)

\(A=\frac{1}{1}-\frac{1}{3}+\frac{1}{3}-\frac{1}{5}+\frac{1}{5}-\frac{1}{7}+...+\frac{1}{19}-\frac{1}{21}\)

\(A=1-\frac{1}{21}\)

\(A=\frac{20}{21}\)

12 tháng 7 2017

\(\frac{2}{3}+\frac{14}{15}+\frac{34}{35}+\frac{62}{63}+...+\frac{9998}{9999}\)

\(=\left(1-\frac{1}{3}\right)+\left(1-\frac{1}{15}\right)+\left(1-\frac{1}{35}\right)+\left(1-\frac{1}{63}\right)+...+\left(1-\frac{1}{9999}\right)\)

\(=\left(1-\frac{1}{1\cdot3}\right)+\left(1-\frac{1}{3\cdot5}\right)+\left(1-\frac{1}{5\cdot7}\right)+\left(1-\frac{1}{7\cdot9}\right)+...+\left(1-\frac{1}{99\cdot101}\right)\)

\(=\left(1+1+1+1+...+1\right)-\frac{1}{2}\cdot\left(1-\frac{1}{3}+\frac{1}{3}-\frac{1}{5}+\frac{1}{5}-\frac{1}{7}+\frac{1}{7}-\frac{1}{9}+...+\frac{1}{99}-\frac{1}{101}\right)\)

Có tất cả : (101 - 3) : 2 + 1 = 50 chữ số 1 => (1 + 1 + 1 + .... + 1) = 1 x 50 = 50 

\(\Rightarrow50-\frac{1}{2}\cdot\left(1-\frac{1}{101}\right)\)

\(=50-\frac{1}{2}\cdot\frac{100}{101}=50-\frac{100}{101}=\frac{4950}{101}\)

Vậy \(\frac{2}{3}+\frac{14}{15}+\frac{34}{35}+\frac{62}{63}+...+\frac{9998}{9999}=\frac{4950}{101}\)

15 tháng 4 2019

\(A=\frac{2}{3.5}+\frac{2}{5.7}+\frac{2}{7.9}+...+\frac{2}{19.21}\)

\(=\frac{1}{3}-\frac{1}{5}+\frac{1}{5}-\frac{1}{7}+\frac{1}{7}-\frac{1}{9}+...+\frac{1}{19}-\frac{1}{21}\)

\(=\frac{1}{3}-\frac{1}{21}\)

\(=\frac{7}{21}-\frac{1}{21}=\frac{6}{21}\)

15 tháng 4 2019

\(A=\frac{2}{3.5}+\frac{2}{5.7}+\frac{2}{7.9}+...+\frac{2}{19.21}\)

\(A=\frac{1}{3}-\frac{1}{5}+\frac{1}{5}-\frac{1}{7}+\frac{1}{7}-\frac{1}{9}+...+\frac{1}{19}-\frac{1}{21}\)

\(A=\frac{1}{3}+\left(\frac{1}{5}-\frac{1}{5}\right)+\left(\frac{1}{7}-\frac{1}{7}\right)+\left(\frac{1}{9}-\frac{1}{9}\right)+...+\left(\frac{1}{19}-\frac{1}{19}\right)-\frac{1}{21}\)

\(A=\frac{1}{3}-\frac{1}{21}\)

\(A=\frac{2}{7}\)

27 tháng 7 2017

\(A=\frac{1}{10}+\frac{1}{15}+\frac{1}{21}+...+\frac{1}{120}\)

\(A=\frac{2}{20}+\frac{2}{30}+\frac{2}{42}+...+\frac{2}{240}\)

\(A=2.\left(\frac{1}{20}+\frac{1}{30}+\frac{1}{42}+...+\frac{1}{240}\right)\)

\(A=2.\left(\frac{1}{4.5}+\frac{1}{5.6}+\frac{1}{6.7}+...+\frac{1}{15.16}\right)\)

\(A=2.\left(\frac{1}{4}-\frac{1}{5}+\frac{1}{5}-\frac{1}{6}+\frac{1}{6}-\frac{1}{7}+...+\frac{1}{15}-\frac{1}{16}\right)\)

\(A=2.\left(\frac{1}{4}-\frac{1}{16}\right)\)

\(A=2.\frac{3}{16}\)

\(A=\frac{3}{8}\)

27 tháng 7 2017

\(B=\frac{2}{15}+\frac{2}{35}+\frac{2}{63}+...+\frac{2}{399}\)

\(B=\frac{2}{3.5}+\frac{2}{5.7}+\frac{2}{7.9}+...+\frac{2}{19.21}\)

\(B=\frac{1}{3}-\frac{1}{5}+\frac{1}{5}-\frac{1}{7}+\frac{1}{7}-\frac{1}{9}+...+\frac{1}{19}-\frac{1}{21}\)

\(B=\frac{1}{3}-\frac{1}{21}\)

\(B=\frac{2}{7}\)

26 tháng 3 2018

kết quả bằng 9/5 đó bạn

26 tháng 3 2018

giải ra các cách được hông bạn

9 tháng 5 2019

\(=\frac{4.4}{3.5}.\frac{5.5}{4.6}......\frac{20.20}{19.21}\)

\(=\left(\frac{4.5...20}{3.4....19}\right).\left(\frac{4.5...20}{5.6....21}\right)\)

\(=\frac{20}{3}.\frac{4}{21}\)

\(=\frac{80}{63}\)

9 tháng 5 2019

\(=\frac{4.4}{3.5}.\frac{5.5}{4.6}.....\frac{20.20}{19.21}\)

=\(\left(\frac{4.5...20}{3.4...19}\right).\left(\frac{4.5.....20}{5.6....21}\right)\)

=\(\frac{20}{3}.\frac{4}{21}\)=\(\frac{80}{63}\)

hok tốt

8 tháng 5 2015

A=2/1.3 + 2/3.5 + 2/5.7 + ... + 2/99.101

A= 2 - 1/3 + 1/3 - 1/5 + 1/5 - ... + 2/99 - 2/101

A = 2 - 2/101 = 200/101

B = 3-1/3+1/3-1/5+1/5-...+3/49-3/51

B = 3-3/51(tự tính nhé)

C = 5(5/1.6+5/6.11+5/11.16+....+5/26-5/31

C = 5(5-1/31)(tự tính)

D rút gon cho 2 rồi 3D , sau đó 5(3/.... tương tự các cách làm trên)

2E nhân lên rồi giải giống trên

3F Rồi nhân 4/77 và rút gọn thì tính được

16 tháng 7 2015

a, A= \(\frac{1}{1}\)\(\frac{1}{3}\)+\(\frac{1}{3}\)-\(\frac{1}{5}\)+......+\(\frac{1}{99}\)-\(\frac{1}{100}\)

A=\(\frac{1}{1}\)-\(\frac{1}{100}\)+(-\(\frac{1}{3}\)+\(\frac{1}{3}\)-.....-\(\frac{1}{99}\)+\(\frac{1}{99}\))

A=\(\frac{1}{1}\)-\(\frac{1}{100}\)+0

A=1-\(\frac{1}{100}\)=\(\frac{100}{100}\)-\(\frac{1}{100}\)=\(\frac{99}{100}\)