\(\frac{1}{30}+\frac{1}{42}+\frac{1}{56}+\frac{1}{72}+...+\frac{1}{210}\)
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

Bạn kham khảo link này nhé.

Câu hỏi của Lê Phương Thảo - Toán lớp 6 - Học toán với OnlineMath

9 tháng 3 2019

\(A=\frac{1}{30}+\frac{1}{42}+\frac{1}{56}+\frac{1}{72}+...+\frac{1}{210}\)

\(\Leftrightarrow A=\frac{1}{5.6}+\frac{1}{6.7}+\frac{1}{7.8}+\frac{1}{8.9}+...+\frac{1}{14.15}\)

\(\Leftrightarrow A=\frac{1}{5}-\frac{1}{6}+\frac{1}{6}-\frac{1}{7}+\frac{1}{7}-\frac{1}{8}+\frac{1}{8}-\frac{1}{9}+...+\frac{1}{14}-\frac{1}{15}\)

\(\Leftrightarrow A=\frac{1}{5}-\frac{1}{15}\)

\(\Leftrightarrow A=\frac{2}{15}\)

7 tháng 6 2017

\(A=\frac{1}{5.6}+\frac{1}{6.7}+...+\frac{1}{14.15}\)

\(A=\frac{1}{5}-\frac{1}{6}+\frac{1}{6}-\frac{1}{7}+...+\frac{1}{14}-\frac{1}{15}\)

\(A=\frac{1}{5}-\frac{1}{15}\)

\(A=\frac{2}{15}\)

7 tháng 6 2017

\(A=\frac{1}{30}+\frac{1}{40}+\frac{1}{56}+\frac{1}{72}+...+\frac{1}{210}\)

\(A=\frac{1}{5.6}+\frac{1}{6.7}+\frac{1}{7.8}+\frac{1}{8.9}+...+\frac{1}{14.15}\)

\(A=\frac{6-5}{5.6}+\frac{7-6}{6.7}+\frac{8-7}{7.8}+\frac{9-8}{8.9}+...+\frac{15-14}{14.15}\)

\(A=1-\frac{1}{5}-\frac{1}{6}+\frac{1}{6}-\frac{1}{7}+\frac{1}{7}-\frac{1}{8}+\frac{1}{8}-\frac{1}{9}+...+\frac{1}{14}-\frac{1}{15}\)

\(A=1-\frac{1}{15}\)

\(A=\frac{14}{15}\)

18 tháng 3 2018

\(A=\frac{1}{30}+\frac{1}{42}+\frac{1}{56}+\frac{1}{72}+\frac{1}{90}+\frac{1}{110}+\frac{1}{132}\)

\(=\frac{1}{5.6}+\frac{1}{6.7}+\frac{1}{7.8}+\frac{1}{8.9}+\frac{1}{9.10}+\frac{1}{10.11}+\frac{1}{11.12}\)

\(=\frac{1}{5}-\frac{1}{6}+\frac{1}{6}-\frac{1}{7}+\frac{1}{7}-\frac{1}{8}+\frac{1}{8}-\frac{1}{9}+\frac{1}{9}-\frac{1}{10}+\frac{1}{10}-\frac{1}{11}+\frac{1}{11}-\frac{1}{12}\)

\(=\frac{7}{60}\)

18 tháng 3 2018

Hình như đề thiếu

13 tháng 5 2016

\(A=\frac{1}{5.6}+\frac{1}{6.7}+\frac{1}{7.8}+....+\frac{1}{14.15}\)

     \(=\frac{1}{5}-\frac{1}{6}+\frac{1}{6}-\frac{1}{7}+.....+\frac{1}{14}-\frac{1}{15}\)

     \(=\frac{1}{5}-\frac{1}{15}\)

     \(=\frac{2}{15}\)

10 tháng 6 2016

A = \(\frac{-79}{90}\)

B = \(\frac{8}{9}\)

10 tháng 6 2016

cách giải sao chỉ mình với

6 tháng 4 2018

\(\frac{1}{6}+\frac{1}{12}+\frac{1}{20}+\frac{1}{30}+...+\frac{1}{72}\)

\(=\frac{1}{2.3}+\frac{1}{3.4}+\frac{1}{4.5}+...+\frac{1}{8.9}\)

\(=\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+\frac{1}{4}-\frac{1}{5}+...+\frac{1}{8}-\frac{1}{9}\)

\(=\frac{1}{2}-\frac{1}{9}=\frac{9}{18}-\frac{2}{18}=\frac{7}{18}\)

6 tháng 4 2018

dễ mà phân tích các mẫu ra là các tích của 2 số gần liên tiếp rồi áp dụng phân số ai cập thui

6 tháng 4 2018

Tìm x biết:

\(\frac{x}{3}-\frac{3}{4}=\frac{1}{12}\)

\(\frac{x}{3}=\frac{1}{12}+\frac{3}{4}\)

\(\frac{x}{3}=\frac{5}{6}\)

\(x=\frac{5}{6}.3\)

\(x=\frac{5}{2}\)

Vậy \(x=\frac{5}{2}\)

\(\frac{29}{30}-\left(\frac{13}{23}+x\right)=\frac{7}{69}\)

\(\frac{13}{23}+x=\frac{29}{30}-\frac{7}{69}\)

\(\frac{13}{23}+x=\frac{199}{230}\)

\(x=\frac{199}{230}-\frac{13}{23}\)

\(x=\frac{3}{10}\)

Vậy \(x=\frac{3}{10}\)

Bài 2: tính

\(\frac{1}{30}+\frac{1}{42}+\frac{1}{56}+\frac{1}{72}+\frac{1}{90}+\frac{1}{110}\)

\(=\frac{1}{5.6}+\frac{1}{6.7}+\frac{1}{7.8}+\frac{1}{8.9}+\frac{1}{9.10}+\frac{1}{10.11}\)

\(=\frac{1}{5}-\frac{1}{6}+\frac{1}{6}-\frac{1}{7}+\frac{1}{7}-\frac{1}{8}+\frac{1}{8}-\frac{1}{9}+\frac{1}{9}-\frac{1}{10}+\frac{1}{10}-\frac{1}{11}\)

\(=\frac{1}{5}-\frac{1}{11}\)

\(=\frac{6}{55}\)

\(\frac{1}{1.2}+\frac{1}{2.3}+\frac{1}{3.4}+...+\frac{1}{49.50}\)

\(=\frac{1}{1}-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+...+\frac{1}{49}-\frac{1}{50}\)

\(=\frac{1}{1}-\frac{1}{50}\)

\(=\frac{49}{50}\)

6 tháng 4 2018

Bài 2:

1/30+1/42+1/56+1/72+1/90+1/110

=1/5.6+1/6.7+1/7.8+1/8.9+1/9.10+1/10.11

=1/5-1/6+1/6-1/7+1/7-1/8+1/8-1/9+1/9-1/10+1/10-1/11

=1/5-1/11=6/55

b)1/1.2+1/2.3+...+1/49.50

=1-1/2+1/2-1/3+...+1/49-1/50

=1-1/50

=49/50

7 tháng 8 2016

\(A=\frac{1}{42}+\frac{1}{56}+\frac{1}{72}+\frac{1}{90}+\frac{1}{110}+\frac{1}{132}+\frac{1}{156}+\frac{1}{182}+\frac{1}{210}\)

\(A=\frac{1}{6.7}+\frac{1}{7.8}+\frac{1}{8.9}+\frac{1}{9.10}+\frac{1}{11.12}+\frac{1}{12.13}+\frac{1}{13.14}+\frac{1}{14.15}\)

\(A=\frac{1}{6}-\frac{1}{7}+\frac{1}{7}-\frac{1}{8}+\frac{1}{8}-\frac{1}{9}+\frac{1}{9}-\frac{1}{10}+\frac{1}{10}-\frac{1}{11}+\frac{1}{11}-\frac{1}{12}+\frac{1}{12}-\frac{1}{13}+\frac{1}{13}-\frac{1}{14}+\frac{1}{14}-\frac{1}{15}\)

\(A=\frac{1}{6}-\frac{1}{15}\)

\(A=\frac{1}{10}\)

7 tháng 8 2016

A=\(\frac{1}{42}+\frac{1}{56}+\frac{1}{72}+\frac{1}{90}+\frac{1}{110}+\frac{1}{132}+\frac{1}{156}+\frac{1}{182}+\frac{1}{210}\)

=\(\frac{1}{6.7}+\frac{1}{7.8}+\frac{1}{8.9}+\frac{1}{9.10}+\frac{1}{10.11}+\frac{1}{11.12}+\frac{1}{12.13}+\frac{1}{13.14}+\frac{1}{14.15}\)

=\(\frac{1}{6}-\frac{1}{7}+\frac{1}{7}-\frac{1}{8}+....+\frac{1}{14}-\frac{1}{15}\)

=\(\frac{1}{6}-\frac{1}{15}=\frac{1}{10}\)

20 tháng 7 2016

\(A=\frac{1}{42}+\frac{1}{56}+\frac{1}{72}+\frac{1}{90}+...+\frac{1}{210}=\frac{1}{6.7}+\frac{1}{7.8}+\frac{1}{8.9}+\frac{1}{9.10}+...+\frac{1}{14.15}\)

\(=\frac{1}{6}-\frac{1}{7}+\frac{1}{7}-\frac{1}{8}+\frac{1}{8}-\frac{1}{9}+\frac{1}{9}-\frac{1}{10}+...+\frac{1}{14}-\frac{1}{15}\)

\(=\frac{1}{6}-\frac{1}{15}=\frac{1}{10}\)

20 tháng 7 2016

\(A=\frac{1}{42}+\frac{1}{56}+\frac{1}{72}+\frac{1}{90}+\frac{1}{110}+\frac{1}{132}+\frac{1}{156}+\frac{1}{182}+\frac{1}{210}\)

\(A=\frac{1}{6.7}+\frac{1}{7.8}+\frac{1}{8.9}+\frac{1}{9.10}+\frac{1}{10.11}+\frac{1}{11.12}+\frac{1}{12.13}+\frac{1}{13.14}+\frac{1}{14.15}\)

\(A=\frac{1}{6}-\frac{1}{7}+\frac{1}{7}-\frac{1}{8}+\frac{1}{8}-\frac{1}{9}+\frac{1}{9}-\frac{1}{10}+\frac{1}{10}-\frac{1}{11}+\frac{1}{11}-\frac{1}{12}+\frac{1}{12}-\frac{1}{13}+\frac{1}{13}-\frac{1}{14}+\frac{1}{14}-\frac{1}{15}\)

\(A=\frac{1}{6}-\frac{1}{15}\)

\(A=\frac{1}{10}\)

6 tháng 11 2017

giúp tớ vs