\(\frac{1}{3}\)-\(\frac{3}{4}\)-( -
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

23 tháng 7 2017

B. 1/3 - 1/3 - 3/5 +3/5 + 5/7 - 5/7  + 9/11 - 9/11 -11/13 + 11/ 13 + 7/9 + 13/15

= 0 -0-0-0-0+7/9 +13/15

= 74/45

25 tháng 8 2018

b, Nhóm các cặp trái dấu vào với nhau thì hết cuối cùng còn 13/15

c,\(\frac{1}{99}-\frac{1}{99}+\frac{1}{98}-\frac{1}{98}+...+\frac{1}{2}-\frac{1}{3}+1\)

\(\frac{1}{6}+1\)= 7/6

19 tháng 7 2018

\(D=\frac{1}{3}-\frac{3}{5}+\frac{5}{7}-\frac{7}{9}+\frac{9}{11}-\frac{11}{13}+\frac{13}{15}+\frac{11}{13}-\frac{9}{11}+\frac{7}{9}-\frac{5}{7}+\frac{3}{5}-\frac{1}{3}\)

\(D=\left(\frac{1}{3}-\frac{1}{3}\right)-\left(\frac{3}{5}-\frac{3}{5}\right)+\left(\frac{5}{7}-\frac{5}{7}\right)-\left(\frac{7}{9}-\frac{7}{9}\right)+\left(\frac{9}{11}-\frac{9}{11}\right)-\left(\frac{11}{13}-\frac{11}{13}\right)+\frac{13}{15}\)

\(D=0+\frac{13}{15}=\frac{13}{15}\)

19 tháng 7 2018

\(=\frac{13}{15}\)

Chúc bạn hok tốt 

23 tháng 8 2018

A = \(\left(\frac{1}{15}-\frac{1}{15}\right)\)\(+\left(\frac{3}{7}-\frac{3}{7}\right)\)\(+\left(\frac{5}{9}-\frac{5}{9}\right)\)\(+\left(\frac{2}{11}-\frac{2}{11}\right)\)\(+\left(\frac{7}{13}-\frac{7}{13}\right)\)\(-\frac{9}{16}\)

A = 0 + 0 + 0 + 0 + 0 - \(\frac{9}{16}\)

A = \(-\frac{9}{16}\)

23 tháng 8 2018

\(A=\frac{1}{5}-\frac{3}{7}+\frac{5}{9}-\frac{2}{11}+\frac{7}{13}-\frac{9}{16}-\frac{7}{13}+\frac{2}{11}-\frac{5}{9}+\frac{3}{7}-\frac{1}{5}\)

     \(=\left(\frac{1}{5}-\frac{1}{5}\right)-\left(\frac{3}{7}-\frac{3}{7}\right)+\left(\frac{5}{9}-\frac{5}{9}\right)-\left(\frac{2}{11}-\frac{2}{11}\right)+\left(\frac{7}{13}-\frac{7}{13}\right)-\frac{9}{16}\)

     \(=0-0+0-0+0-\frac{9}{16}\)

    \(=-\frac{9}{16}\)

24 tháng 4 2020

1.a) Sửa lại đề: \(\frac{11}{17}\)ở mẫu chuyển thành \(\frac{11}{7}\)

\(\frac{0,75+0,6-\frac{3}{7}-\frac{3}{13}}{2,75+2,2-\frac{11}{7}-\frac{11}{13}}=\frac{\frac{3}{4}+\frac{3}{5}-\frac{3}{7}-\frac{3}{13}}{\frac{11}{4}+\frac{11}{5}-\frac{11}{7}-\frac{11}{13}}\)\(=\frac{3\left(\frac{1}{4}+\frac{1}{5}-\frac{1}{7}-\frac{1}{13}\right)}{11\left(\frac{1}{4}+\frac{1}{5}-\frac{1}{7}-\frac{1}{13}\right)}=\frac{3}{11}\)

( vì \(\frac{1}{4}+\frac{1}{5}-\frac{1}{7}-\frac{1}{13}\ne0\))

2.a) \(\frac{3}{5}+\frac{3}{2}.x=\frac{-5}{7}\)\(\Leftrightarrow\frac{3}{2}.x=\frac{-5}{7}-\frac{3}{5}\)

\(\Leftrightarrow\frac{3}{2}.x=\frac{-46}{35}\)\(\Leftrightarrow x=\frac{-46}{35}:\frac{3}{2}\)\(\Leftrightarrow x=\frac{-92}{105}\)

Vậy \(x=\frac{-92}{105}\)

b) \(\left(4x-\frac{1}{3}\right).\left(\frac{3}{2}x+\frac{5}{6}\right)=0\)\(\Leftrightarrow\orbr{\begin{cases}4x-\frac{1}{3}=0\\\frac{3}{2}x+\frac{5}{6}=0\end{cases}}\Leftrightarrow\orbr{\begin{cases}4x=\frac{1}{3}\\\frac{3}{2}x=\frac{-5}{6}\end{cases}}\Leftrightarrow\orbr{\begin{cases}x=\frac{1}{12}\\x=\frac{-5}{9}\end{cases}}\)

Vậy \(x=\frac{-5}{9}\)hoặc \(x=\frac{1}{12}\)

Bài 2:

a) \(x:\left(\frac{2}{9}-\frac{1}{5}\right)=\frac{8}{16}\)

\(\Leftrightarrow x:\frac{1}{45}=\frac{1}{2}\)

\(\Leftrightarrow x=\frac{1}{2}:\frac{1}{45}=\frac{45}{2}\)

b) \(\left(2x-1\right).\left(2x+3\right)=0\)

\(\)\(\Leftrightarrow\left[{}\begin{matrix}2x-1=0\\2x+3=0\end{matrix}\right.\)

\(\Leftrightarrow\left[{}\begin{matrix}2x=1\\2x=-3\end{matrix}\right.\)

\(\Leftrightarrow\left[{}\begin{matrix}x=\frac{1}{2}\\x=-\frac{3}{2}\end{matrix}\right.\)

c) \(\frac{4-3x}{2x+5}=0\Leftrightarrow4-3x=0\)

\(\Leftrightarrow3x=4\Rightarrow x=\frac{4}{3}\)

d) \(\left(x-2\right).\left(x+\frac{2}{3}\right)\ge0\)

\(\Leftrightarrow\left[{}\begin{matrix}\left\{{}\begin{matrix}x-2>0\\x+\frac{3}{2}>0\end{matrix}\right.\\\left\{{}\begin{matrix}x-2< 0\\x+\frac{3}{2}< 0\end{matrix}\right.\end{matrix}\right.\)

\(\Leftrightarrow\left[{}\begin{matrix}\left\{{}\begin{matrix}x>2\\x>-\frac{3}{2}\end{matrix}\right.\\\left\{{}\begin{matrix}x< 2\\x< -\frac{3}{2}\end{matrix}\right.\end{matrix}\right.\)

28 tháng 7 2019

Bài 2:

a) \(x:\left(\frac{2}{9}-\frac{1}{5}\right)=\frac{8}{16}\)

=> \(x:\frac{1}{45}=\frac{1}{2}\)

=> \(x=\frac{1}{2}.\frac{1}{45}\)

=> \(x=\frac{1}{90}\)

Vậy \(x=\frac{1}{90}.\)

b) \(\left(2x-1\right).\left(2x+3\right)=0\)

=> \(\left\{{}\begin{matrix}2x-1=0\\2x+3=0\end{matrix}\right.\) => \(\left\{{}\begin{matrix}2x=0+1=1\\2x=0-3=-3\end{matrix}\right.\) => \(\left\{{}\begin{matrix}x=1:2\\x=\left(-3\right):2\end{matrix}\right.\)

=> \(\left\{{}\begin{matrix}x=\frac{1}{2}\\x=-\frac{3}{2}\end{matrix}\right.\)

Vậy \(x\in\left\{\frac{1}{2};-\frac{3}{2}\right\}.\)

Mình chỉ làm được thế thôi nhé, mong bạn thông cảm.

Chúc bạn học tốt!

12 tháng 2 2020

Bài 11: Cho tam giác ABC có AB=AC. Gọi M là trung điểm của BC. Chứng minh rằng:

a. AMB = AMC

b. AM là tia phân giác của góc

c. AM ⊥ BC

d. Vẽ At là tia phân giác của góc ngoài ở đỉnh A của Chứng minh:At//BC

Bài 12: Cho tam giác ABC, = 900. Trên BC lấy E sao cho BE = BA. Tia phân giác của góc B cắt AC ở D.

a. Chứng minh Δ ABD = Δ EBD

b. Tính số đo \hat{BED}

c. Chứng minh BD ⊥ AE

Bài 13: Cho tam giác ABC, D là trung điểm của AB, E là trung điểm của AC. Vẽ F sao cho E là trung điểm của DF. Chứng minh:

a. ADE = CFE

b. DB = CF

c. AB // CF

d. DE // BC

Bài 14: Cho tam giác ABC có BA<BC. Trên tia BA lấy điểm D sao cho BD = BC.Tia phân giác của góc B cắt AC và DC lần lượt tại E và I.

a. Chứng minh rằng: ΔBEC =Δ BED

b. Chứng minh ID = IC

c. Từ A kẻ AH DC, H. Chứng minh: AH // BI

Bài 15: Cho tam giác ABC. Trên tia đối AB lấy D sao cho AD = AB, trên tia đối AC lấy điểm E sao cho AE = AC.

a. Chứng minh rằng: BE = CD

b. Chứng minh: BE//CD

c. Gọi M là trung điểm của BE và N là trung điểm của CD. Chứng minh:AM = AN

Hình học nha:)

\(B=\frac{1}{3}-\frac{3}{4}+0,6+\frac{1}{64}-\frac{2}{9}-\frac{1}{36}+\frac{1}{15}\)

\(\Rightarrow B=\frac{3}{15}-\frac{48}{64}+\frac{9}{15}+\frac{1}{64}-\frac{8}{36}-\frac{1}{36}+\frac{1}{15}\)

\(\Rightarrow B=\frac{3}{15}+\frac{9}{15}+\frac{1}{15}+\left(-\frac{48}{64}+\frac{1}{64}\right)+\left(-\frac{8}{36}-\frac{1}{36}\right)\)

\(\Rightarrow B=\frac{13}{15}-\frac{47}{64}-\frac{1}{4}\)

\(\Rightarrow B=-\frac{113}{960}\)

\(C=0\)

\(D=\frac{1}{99}-\frac{1}{99.98}-...-\frac{1}{3.2}-\frac{1}{2.1}\)

\(\Rightarrow D=\frac{1}{99}-\frac{1}{99}+\frac{1}{98}-\frac{1}{98}+...-\frac{1}{3}+\frac{1}{2}-\frac{1}{2}+1\)

\(\Rightarrow D=1\)

11 tháng 8 2019

D= \(\frac{1}{99}-\frac{1}{99.98}-\frac{1}{98.97}......-\frac{1}{3.2}-\frac{1}{2.1}\)

=\(\frac{1}{99}-\left(\frac{1}{1.2}+\frac{1}{2.3}+.......+\frac{1}{97.98}+\frac{1}{98.99}\right)\)

=\(\frac{1}{99}-\left(1-\frac{1}{2}+\frac{1}{2}-.....-\frac{1}{98}-\frac{1}{99}\right)\)

=\(\frac{1}{99}-\left[1-(\frac{1}{2}-\frac{1}{2}+......+\frac{1}{98}-\frac{1}{99})\right]\)

=\(\frac{1}{99}-\left(1-0-0-.....-0-\frac{1}{99}\right)\)

=\(\frac{1}{99}-1-\frac{1}{99}\)

=1