\(\frac{1}{2}+\frac{1}{4}+\frac{1}{8}+\frac{1}{16}+\frac{1}{32}+\frac{1}{64}...">
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

20 tháng 5 2016

Ta có: \(\frac{1}{2}+\frac{1}{4}+\frac{1}{8}+\frac{1}{16}+\frac{1}{32}+\frac{1}{64}+\frac{1}{128}\)

 = \(\frac{1}{2}+\left(\frac{1}{2}-\frac{1}{4}\right)+\left(\frac{1}{4}-\frac{1}{8}\right)+....+\left(\frac{1}{64}-\frac{1}{128}\right)\)

=\(\frac{1}{2}+\frac{1}{2}-\frac{1}{128}\)

\(=1-\frac{1}{128}=\frac{127}{128}\)

21 tháng 5 2016

MẤY CÂU KHÁC THÌ SAO?

Đáp án

mình lười trình bày cách làm lém, để đáp án thui nha

A = \(\frac{1999}{2000}\)

B = \(\frac{199}{200}\)

C = \(\frac{511}{512}\)

\(\frac{1}{1.2.3}+\frac{1}{2.3.4}+...+\frac{1}{8.9.10}=\frac{1}{2}.\left(\frac{1}{1.2}-\frac{1}{2.3}\right)+\frac{1}{2}.\left(\frac{1}{2.3}-\frac{1}{3.4}\right)+...+\frac{1}{2}.\left(\frac{1}{8.9}-\frac{1}{9.10}\right)\)

\(=\frac{1}{2}.\left(\frac{1}{1.2}-\frac{1}{2.3}+\frac{1}{2.3}-\frac{1}{3.4}+...+\frac{1}{8.9}-\frac{1}{9.10}\right)\)

\(\frac{1}{2}.\left(\frac{1}{1.2}-\frac{1}{9.10}\right)=\frac{1}{2}.\frac{22}{45}=\frac{11}{45}\)

16 tháng 7 2020

\(A=\frac{1}{2\times4}+\frac{1}{4\times6}+\frac{1}{6\times8}+...+\frac{1}{2012\times2014}\)

\(=\frac{1}{2}\times(\frac{2}{2\times4}+\frac{2}{4\times6}+\frac{2}{6\times8}+...+\frac{2}{2012\times2014})\)

\(=\frac{1}{2}\times(\frac{1}{2}-\frac{1}{4}+\frac{1}{4}-\frac{1}{6}+\frac{1}{6}-\frac{1}{8}+...+\frac{1}{2012}-\frac{1}{2014})\)

\(=\frac{1}{2}\times(\frac{1}{2}-\frac{1}{2014})\)

\(=\frac{1}{2}\times(\frac{1007}{2014}-\frac{1}{2014})\)

\(=\frac{1}{2}\times\frac{503}{1007}\)

\(=\frac{503}{2014}\)

Ta có ; \(\frac{1}{2}=\frac{1007}{2014}\)

Vậy A bé hơn B

Chúc bạn học tốt

10 tháng 9 2017

\(=\frac{1}{1.2}+\frac{1}{2.3}+\frac{1}{3.4}+\frac{1}{4.5}+\frac{1}{6.7}+\frac{1}{7.8}\)

\(=\frac{1}{1}-\frac{1}{8}\)

\(=\frac{7}{8}\)'

\(\frac{5}{1.6}\)\(\frac{5}{6.11}\)+ .........+\(\frac{5}{501.506}\)

=\(\frac{1}{1.6}+\frac{1}{6.11}+.....+\frac{1}{501.506}\)

=\(\frac{1}{1}-\frac{1}{6}+\frac{1}{6}-\frac{1}{11}+......+\frac{1}{501}-\frac{1}{506}\)

=\(\frac{1}{1}-\frac{1}{506}\)

= tự tính nha

1 tháng 8 2019

Giải

Làm thử thoi nhoa !

a)8,3.39-2,93.500+19,8.20

=323,7-1465+396

=323,7+396-1465

=719,7-1456

=-745,3

30 tháng 11 2017

 = 1/2+1/4+....+1/512+1/512 - 1/512

 = 1/2+1/4+....+1/256+1/256 - 1/512

 ........

 = 1/2+1/2 - 1/512 = 1-1/512 = 511/512

k mk nha

1 tháng 12 2017

làm ơn ghi rõ hộ mình một chút được không

8 tháng 7 2015

lấy 2 S                

16 tháng 7 2017

Gọi biểu thức trên là A

Ta có :

\(A=\frac{1}{2}+\frac{1}{4}+\frac{1}{8}+...+\frac{1}{256}\)

\(2A=1+\frac{1}{2}+\frac{1}{4}+...+\frac{1}{128}+\frac{1}{256}-\frac{1}{256}\)

\(2A=1+A-\frac{1}{256}\)

\(2A=A+1-\frac{1}{256}\)

\(2A-A=\frac{255}{256}\)

\(A=\frac{255}{256}\)

16 tháng 7 2017

Gọi \(A=\frac{1}{2}+\frac{1}{4}+\frac{1}{8}+...+\frac{1}{256}=\frac{1}{2}+\frac{1}{2^2}+\frac{1}{2^3}+...+\frac{1}{2^8}\)

\(\Rightarrow2A=1+\frac{1}{2}+\frac{1}{2^2}+...+\frac{1}{2^7}\)

\(2A-A=\left[1+\frac{1}{2}+\frac{1}{2^2}+...+\frac{1}{2^7}\right]-\left[\frac{1}{2}+\frac{1}{2^2}+\frac{1}{2^3}+...+\frac{1}{2^8}\right]\)

\(A=1+\frac{1}{2}+\frac{1}{2^2}+\frac{1}{2^3}+...+\frac{1}{2^7}-\frac{1}{2}-\frac{1}{2^2}-\frac{1}{2^3}-...-\frac{1}{2^8}\)

\(A=1-\frac{1}{2^8}=1-\frac{1}{256}=\frac{255}{256}\)