Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(A=\frac{1}{1.3}-\frac{1}{2.4}+\frac{1}{3.5}-\frac{1}{4.6}+\frac{1}{5.7}-\frac{1}{6.8}+\frac{1}{7.9}-\frac{1}{8.10}\)
\(A=\left(\frac{1}{1.3}+\frac{1}{3.5}+\frac{1}{5.7}+\frac{1}{7.9}\right)-\left(\frac{1}{2.4}+\frac{1}{4.6}+\frac{1}{6.8}+\frac{1}{8.10}\right)\)
\(A=\frac{1}{2}\left(\frac{2}{1.3}+\frac{2}{3.5}+\frac{2}{5.7}+\frac{2}{7.9}\right)-\frac{1}{2}\left(\frac{2}{2.4}+\frac{2}{4.6}+\frac{2}{6.8}+\frac{2}{8.10}\right)\)
\(A=\frac{1}{2}\left(1-\frac{1}{3}+\frac{1}{3}-\frac{1}{5}+\frac{1}{5}-\frac{1}{7}+\frac{1}{7}-\frac{1}{9}\right)-\frac{1}{2}\left(\frac{1}{2}-\frac{1}{4}+\frac{1}{4}-\frac{1}{6}+\frac{1}{6}-\frac{1}{8}+\frac{1}{8}-\frac{1}{10}\right)\)
\(A=\frac{1}{2}\left(1-\frac{1}{9}\right)-\frac{1}{2}\left(\frac{1}{2}-\frac{1}{10}\right)\)
\(A=\frac{4}{9}-\frac{1}{5}=\frac{11}{45}\)
\(S=\frac{1}{1.3}-\frac{1}{2.4}+\frac{1}{3.5}-\frac{1}{4.6}+\frac{1}{5.7}-\frac{1}{6.8}+\frac{1}{7.9}-\frac{1}{8.10}\)
\(S=\left(\frac{1}{1.3}+\frac{1}{3.5}+\frac{1}{5.7}+\frac{1}{7.9}\right)-\left(\frac{1}{2.4}+\frac{1}{4.6}+\frac{1}{6.8}+\frac{1}{8.10}\right)\)
\(S=\frac{1}{2}\left(1-\frac{1}{3}+...+\frac{1}{7}-\frac{1}{9}\right)-\frac{1}{2}\left(\frac{1}{2}-\frac{1}{4}+...+\frac{1}{8}-\frac{1}{10}\right)\)
\(S=\frac{1}{2}\left(1-\frac{1}{9}\right)-\frac{1}{2}\left(\frac{1}{2}-\frac{1}{10}\right)\)
\(S=\frac{1}{2}.\frac{8}{9}-\frac{1}{2}.\frac{2}{5}\)
\(S=\frac{4}{9}-\frac{1}{5}\)
\(S=\frac{11}{45}\)
=\(\frac{1}{2}.\left(\frac{2}{1.3}+\frac{2}{2.4}+...+\frac{2}{8.10}\right)\)
= \(\frac{1}{2}.\left(1-\frac{1}{3}+\frac{1}{2}-\frac{1}{4}+....+\frac{1}{8}-\frac{1}{10}\right)\)
= \(\frac{1}{2}.\left(1+\frac{1}{2}-\frac{1}{9}-\frac{1}{10}\right)\)
=\(\frac{29}{45}\)
Bài làm
D=ko viết lại đề
=1/1.3+1/1.5+1/5.7+1/7.9-1/2.4-1/4.6-1/6.8-1/8.10
=1+1/9-1-1/10
=10/9-9/10
=19/90
=(1/1.3+...+1/7.9)-(1/2.4+...+1/8.10)
=2(1/1.3+...+1/7.9)-2(1/2.4+...+1/8.10)
=(2/1.3+...+2/7.9)-(2/2.4+...+2/8.10)
=(1-1/3+...+1/7-1/9)-(1/2-1/4+ +1/8-1/10)
=1-1/9-1/2+1/10
tự tính tiếp nhé
Đặt \(A=\frac{1}{1.3}+\frac{1}{2.4}+\frac{1}{3.5}+\frac{1}{4.6}+...+\frac{1}{2013.2015}+\frac{1}{2014.2016}< \frac{3}{4}\)
\(\Leftrightarrow A=\left(\frac{1}{1.3}+\frac{1}{3.5}+...+\frac{1}{2013.2015}\right)+\left(\frac{1}{2.4}+\frac{1}{4.6}+...+\frac{1}{2014.2016}\right)\)
\(\Leftrightarrow A=\left(1-\frac{1}{3}+\frac{1}{3}-\frac{1}{5}+...+\frac{1}{2013}-\frac{1}{2015}\right)+\left(\frac{1}{2}-\frac{1}{4}+\frac{1}{4}-\frac{1}{6}+...+\frac{1}{2014}-\frac{1}{2016}\right)\)
\(\Leftrightarrow A=\left(1-\frac{1}{2015}\right)+\left(\frac{1}{2}-\frac{1}{2016}\right)\)
\(\Leftrightarrow A=\frac{2014}{2015}+\frac{1007}{2016}\)
\(\Leftrightarrow A=1,5\)
Đổi \(\frac{3}{4}=0,75\)
Vì 0,75 < 1,5
Nên ko thể CM
Bài này mà cũng hỏi thì đừng có thi nữa. đợi vài ngày sau có đáp án nhé.
\(A=\frac{1}{1\times3}+\frac{1}{2\times4}+\frac{1}{3\times5}+\frac{1}{4\times6}+\frac{1}{5\times7}+\frac{1}{6\times8}+\frac{1}{7\times9}+\frac{1}{8\times10}\)
\(2A=\frac{2}{1\times3}+\frac{2}{2\times4}+\frac{2}{3\times5}+\frac{2}{4\times6}+\frac{2}{5\times7}+\frac{2}{6\times8}+\frac{2}{7\times9}+\frac{2}{8\times10}\)
\(2A=1-\frac{1}{3}+\frac{1}{2}-\frac{1}{4}+\frac{1}{3}-\frac{1}{5}+\frac{1}{4}-\frac{1}{6}+\frac{1}{5}-\frac{1}{7}+\frac{1}{6}-\frac{1}{8}+\frac{1}{7}-\frac{1}{9}+\frac{1}{8}-\frac{1}{10}\)
\(2A=1+\frac{1}{2}-\frac{1}{9}-\frac{1}{10}\)
\(2A=\frac{58}{45}\)
\(A=\frac{58}{45}\div2\)
\(A=\frac{29}{45}\)
\(2A=\frac{2}{1.3}+\frac{2}{2.4}+...+\frac{2}{8.10}=1-\frac{1}{3}+\frac{1}{2}-\frac{1}{4}+\frac{1}{3}-....+\frac{1}{8}-\frac{1}{10}\)
\(=1+\frac{1}{2}-\frac{1}{9}-\frac{1}{10}=\frac{58}{45}\)
\(A=\frac{29}{45}\)