Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(B=\frac{2}{3.5}+\frac{2}{5.7}+...+\frac{2}{99.101}\)
\(=2\left(\frac{1}{3}-\frac{1}{5}+\frac{1}{5}-\frac{1}{7}+...+\frac{1}{99}-\frac{1}{101}\right)\)
\(=2\left(\frac{1}{3}-\frac{1}{101}\right)\)
\(=2.\frac{98}{303}=\frac{196}{303}\)
a ) 1/x = 1/6 + y/3 = 1/6 + y.2/6 = 1+y.2/6
Để 1+ y.2 / 6 = 1/x thì 1 + y.2 = { 1 ; 2 ; 3 ; 6 }
1+y.2 = 1 => y = 0 <=> x = 6
1 + y.2 = 2 => không tồn tại y
1 + y.2 = 3 => y = 1 <=> x = 2
1 + y. 2 = 6 => không tồn tại y
b ) x/6 - 1/y = 1/2 = 3/6
=> x > 3
x = 4 thì y = 6
x = 5 thì y = 3
x = 6 thì y = 2
a) \(\frac{1}{x}=\frac{1}{6}+\frac{y}{3}\Leftrightarrow\frac{1}{x}=\frac{1+2y}{6}\)
\(\Leftrightarrow x\left(1+2y\right)=6\)\(\Rightarrow x;\left(1+2y\right)\)là cặp ước của 6.
Bạn tự lập bảng và tìm giá trị của x và y.
b) \(\frac{x}{6}-\frac{1}{y}=\frac{1}{2}\Leftrightarrow\frac{1}{y}=\frac{x}{6}-\frac{1}{2}=\frac{x-3}{6}\)
\(\Leftrightarrow y\left(x-3\right)=6\)\(\Rightarrow y;\left(x-3\right)\)là cặp ước của 6.
= 1 - 1/2 + 1/2 - 1/3 + 1/3 - 1/4 + ............. + 1/99 - 1/100
= 1 - 1/100
= 99/100
c, 1/3-1/4+1/4-1/5+........+1/50-1/51
= 1/3-1/51
= 16/51
d, (đề bài)
= 1/1.5+1/5.9 +.........+1/97.101
=1/1-1/5+1/5-1/9+.....+1/97-1/101
=1/1-1/101
= 100/101
d, \(\frac{1}{1.5}+\frac{1}{5.9}+...+\frac{1}{97.101}\)
\(=\frac{1}{1}-\frac{1}{5}+\frac{1}{5}-\frac{1}{9}+...+\frac{1}{97}-\frac{1}{101}\)
\(=\frac{1}{1}-\frac{1}{101}=\frac{100}{101}\)
\(\Leftrightarrow2\left(\frac{1}{2.3}+\frac{1}{3.4}+\frac{1}{4.5}+...+\frac{1}{x\left(x+1\right)}\right)=\frac{2008}{2010}\)
\(\Leftrightarrow2\left(\frac{3-2}{2.3}+\frac{4-3}{3.4}+\frac{5-4}{4.5}+...+\frac{\left(x+1\right)-x}{x\left(x+1\right)}\right)=\frac{2008}{2010}\)
\(\Leftrightarrow2\left(\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+\frac{1}{4}-\frac{1}{5}+...+\frac{1}{x}-\frac{1}{x+1}\right)=\frac{2008}{2010}\)
\(\Leftrightarrow\frac{1}{2}-\frac{1}{x+1}=\frac{1004}{2010}\)
\(\Leftrightarrow\frac{1}{x+1}=\frac{1}{2010}\)
\(\Leftrightarrow x+1=2010\)
\(\Leftrightarrow x=2009\)
17A = \(\frac{17^{2009}+17}{17^{2009}+1}=1+\frac{16}{17^{2009}+1}\)
17B = \(\frac{17^{2010}+17}{17^{2010}+1}=1+\frac{16}{17^{2010}+1}\)
mà \(\frac{16}{17^{2009}+1}>\frac{16}{17^{2010}+1}\)
=> A > B
B < 17 ^ 2009 + 1 + 16 / 17^2010 + 1+16 = 17^2009 + 17 / 17^2010 + 17 = 17(17^2008 + 1) / 17(17^2009+1) = 17^2008 + 1 / 17^2009 + 1 =A
=> B < A
****** k mk nha!
\(A=\frac{1}{2.3}+\frac{1}{3.4}+...+\frac{1}{50.51}\)
\(=\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+...+\frac{1}{50}-\frac{1}{51}\)
\(=\frac{1}{2}-\frac{1}{51}=\frac{49}{102}\)
Vậy \(A=\frac{49}{102}\)