Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
1)
\(\left(a\right)37+397+3997+39997\)
\(=40-3+400-3+4000-3+40000-3\)
\(=\left(40+400+4000+40000\right)-\left(3+3+3+3\right)\)
\(=44440-12=44428\)
\(\left(b\right)298+2998+29998+299998\)
\(=300-2+3000-2+30000-2+300000-2\)
\(=\left(300+3000+30000+300000\right)-\left(2+2+2+2\right)\)
\(=333300-8=333296\)
\(\left(c\right)9+99+999+9999+99999\)
\(=10-1+100-1+1000-1+10000-1+100000-1\)
\(=\left(10+100+1000+10000+100000\right)-\left(1+1+1+1+1\right)\)
\(=111110-5=111105\)
2)
\(\left(a\right)\left(2+4+6+...+2002+2004+2006\right)-\left(1+3+5+...+2001+2003+2005\right)\)
\(=\left(2-1\right)+\left(4-3\right)+\left(6-5\right)+...+\left(2002-2001\right)+\left(2004-2003\right)+\left(2006-2005\right)\)
\(=1+1+1+...+1+1+1\)( 1003 số 1 )
\(=1003\)
\(\left(b\right)88-87+86-85+84-83+...+6-5+4-3+2-1\)
\(=\left(88-87\right)+\left(86-85\right)+\left(84-83\right)+...+\left(6-5\right)+\left(4-3\right)+\left(2-1\right)\)
\(=1+1+1+...+1+1+1\)( 44 số 1 )
\(=44\)
\(\left(c\right)100-98+96-94+92-90+...+12-10+8-6+4-2\)
\(=\left(100-98\right)+\left(96-94\right)+\left(92-90\right)+...+\left(12-10\right)+\left(8-6\right)+\left(4-2\right)\)
\(=2+2+2+...+2+2+2\) ( 25 số 2 )
\(=50\)
3)
\(\left(a\right)360-357+354-351+348-345+...+312-309+306-303+300-297\)
\(=\left(360-357\right)+\left(354-351\right)+\left(348-345\right)+...+\left(312-309\right)+\left(306-303\right)+\)\(\left(300-297\right)\)
\(=3+3+3+3+3+3+3+3+3+3+3=33\)
\(\left(b\right)2006-1-2-3-4-...-47-48-49-50\)
\(=2006-\left(1+2+3+4+...+47+48+49+50\right)\)
\(=2006-\frac{\left(50+1\right)\left[\left(50-1\right)+1\right]}{2}\)
\(=2006-1275=731\)
\(\left(c\right)280-276+272-268+264-260+...+216-212+208-204+200-196\)
\(=\left(280-276\right)+\left(272-268\right)+\left(264-260\right)+...+\left(216-212\right)+\left(208-204\right)+\)\(\left(200-196\right)\)
\(=4+4+4+4+4+4+4+4+4+4+4=44\)
=17/6:(1-2/3)
=17/6:1/3
=17/2
=13/6×9/2-6/7
=39/4-6/7
=249/28
a) \(\left(\frac{5}{2}+\frac{1}{3}\right):\left(1-\frac{2}{3}\right)=\left(\frac{15}{6}+\frac{2}{6}\right):\frac{1}{3}\)
\(=\frac{17}{6}:\frac{1}{3}=\frac{17}{6}\cdot\frac{3}{1}=\frac{17}{2}\cdot\frac{1}{1}=\frac{17}{2}\)
b) \(\left(\frac{5}{2}-\frac{1}{3}\right)\cdot\frac{9}{2}-\frac{6}{7}=\left(\frac{15}{6}-\frac{2}{6}\right)\cdot\frac{9}{2}-\frac{6}{7}\)
\(=\frac{13}{6}\cdot\frac{9}{2}-\frac{6}{7}=\frac{13}{2}\cdot\frac{3}{2}-\frac{6}{7}=\frac{39}{4}-\frac{6}{7}=\frac{273}{28}-\frac{24}{28}=\frac{249}{28}\)
a) \(A=98+\frac{1}{2}+\frac{1}{3}+...+\frac{1}{99}\)(có 98 phân số nên ta cộng 1 vào mỗi phân số)
\(A=\left(\frac{1}{2}+1\right)+\left(\frac{1}{3}+1\right)+...+\left(\frac{1}{99}+1\right)\)
\(A=\frac{3}{2}+\frac{4}{3}+...+\frac{100}{99}\)
Và \(B=\frac{3}{2}+\frac{4}{3}+...+\frac{100}{99}\)
\(\Rightarrow\frac{A}{B}=\frac{\frac{3}{2}+\frac{4}{3}+...+\frac{100}{99}}{\frac{3}{2}+\frac{4}{3}+...+\frac{100}{99}}=1\)
b) \(A=2018+\frac{1}{2}+\frac{1}{3}+...+\frac{1}{2019}\)(có 2018 phân số nên ta cộng 1 vào mỗi phân số)
\(A=\left(\frac{1}{2}+1\right)+\left(\frac{1}{3}+1\right)+...+\left(\frac{1}{2019}+1\right)\)
\(A=\frac{3}{2}+\frac{4}{3}+...+\frac{2020}{2019}\)
Và \(B=\frac{3}{2}+\frac{4}{3}+...+\frac{2020}{2019}\)
\(\Rightarrow\frac{A}{B}=\frac{\frac{3}{2}+\frac{4}{3}+...+\frac{2020}{2019}}{\frac{3}{2}+\frac{4}{3}+...+\frac{2020}{2019}}=1\)
c) \(A=\frac{99}{1}+\frac{98}{2}+...+\frac{1}{99}\)
\(A=99+\frac{98}{2}+...+\frac{1}{99}\)(có 98 phân số nên ta cộng 1 vào từng phân số)
\(A=\left(\frac{98}{2}+1\right)+\left(\frac{97}{3}+1\right)+...+\left(\frac{1}{99}+1\right)+1\)
\(A=\frac{100}{2}+\frac{100}{3}+...+\frac{100}{99}+1\)
\(A=100\left(\frac{1}{2}+\frac{1}{3}+...+\frac{1}{99}+\frac{1}{100}\right)\)
Và \(B=\frac{1}{2}+\frac{1}{3}+...+\frac{1}{99}+\frac{1}{100}\)
\(\Rightarrow\frac{A}{B}=\frac{100\left(\frac{1}{2}+\frac{1}{3}+...+\frac{1}{99}+\frac{1}{100}\right)}{\frac{1}{2}+\frac{1}{3}+...+\frac{1}{99}+\frac{1}{100}}=100\)
a)\(B=\frac{3}{2}+\frac{4}{3}+\frac{5}{4}+...+\frac{100}{99}\)
\(B=\left(1+\frac{1}{2}\right)+\left(1+\frac{1}{3}\right)+\left(1+\frac{1}{4}\right)+...+\left(1+\frac{1}{99}\right)\)
\(\Rightarrow B=\left(1+1+1+...+1\right)+\left(\frac{1}{2}+\frac{1}{3}+\frac{1}{4}+...+\frac{1}{99}\right)\)
\(\Rightarrow B=98+\frac{1}{2}+\frac{1}{3}+\frac{1}{4}+...+\frac{1}{99}\)
\(\Rightarrow A:B=\frac{A}{B}=\frac{98+\frac{1}{2}+\frac{1}{3}+\frac{1}{4}+...+\frac{1}{99}}{98+\frac{1}{2}+\frac{1}{3}+\frac{1}{4}+...+\frac{1}{99}}=1.\)
Vậy \(A:B=1.\)
b)\(B=\left(1+\frac{1}{2}\right)+\left(1+\frac{1}{3}\right)+\left(1+\frac{1}{4}\right)+...+\left(1+\frac{1}{2019}\right)\)
\(\Rightarrow B=\left(1+1+1+...+1\right)+\left(\frac{1}{2}+\frac{1}{3}+\frac{1}{4}+...+\frac{1}{2019}\right)\)
\(\Rightarrow B=2018+\frac{1}{2}+\frac{1}{3}+\frac{1}{4}+...+\frac{1}{2019}\)
\(\Rightarrow A:B=\frac{A}{B}=\frac{2018+\frac{1}{2}+\frac{1}{3}+\frac{1}{4}+...+\frac{1}{2019}}{2018+\frac{1}{2}+\frac{1}{3}+\frac{1}{4}+...+\frac{1}{2019}}=1.\)
Vậy \(A:B=1.\)
c)\(A=\left(1+1+...+1\right)+\frac{98}{2}+\frac{97}{3}+...+\frac{2}{98}+\frac{1}{99}\)
\(A=\left(1+\frac{98}{2}\right)+\left(1+\frac{97}{3}\right)+...+\left(1+\frac{2}{98}\right)+\left(1+\frac{1}{99}\right)\)
\(A=\frac{100}{2}+\frac{100}{3}+...+\frac{100}{98}+\frac{100}{99}\)
\(A=100\left(\frac{1}{2}+\frac{1}{3}+\frac{1}{4}+...+\frac{1}{98}+\frac{1}{99}\right)\)
\(\Rightarrow A:B=\frac{A}{B}=\frac{100\left(\frac{1}{2}+\frac{1}{3}+\frac{1}{4}+...+\frac{1}{98}+\frac{1}{99}\right)}{\frac{1}{2}+\frac{1}{3}+\frac{1}{4}+...+\frac{1}{98}+\frac{1}{99}}=1.\)
Vậy \(A:B=1.\)
a) mk chỉnh đề
\(A=\left(1+\frac{1}{2005}\right)\left(1+\frac{1}{2006}\right)\left(1+\frac{1}{2019}\right)\)
\(=\frac{2006}{2005}.\frac{2007}{2006}.....\frac{2020}{2019}\)
\(=\frac{2020}{2005}\)
\(=\frac{404}{401}\)
\(B=\frac{3}{1}+\frac{3}{1+2}+\frac{3}{1+2+3}+....+\frac{3}{1+2+3+...+100}\)
\(=3+3\left(\frac{1}{1+2}+\frac{1}{1+2+3}+...+\frac{1}{1+2+3+...+100}\right)\)
\(=3+3.\left(\frac{1}{\frac{2.3}{2}}+\frac{1}{\frac{3.4}{2}}+....+\frac{1}{\frac{100.101}{2}}\right)\)
\(=3+3.\left(\frac{2}{2.3}+\frac{2}{3.4}+...+\frac{2}{100.101}\right)\)
\(=3+6\left(\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+...+\frac{1}{100}-\frac{1}{101}\right)\)
\(=3+6\left(\frac{1}{2}-\frac{1}{101}\right)=3+6.\frac{99}{202}\)
\(=3+2\frac{95}{101}=5\frac{95}{101}\)
\(\)