K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

4 tháng 3 2017

A = \(\frac{1}{6}+\frac{1}{10}+\frac{1}{15}+...+\frac{1}{210}\)

\(\frac{1}{2}A=\frac{1}{2}\left(\frac{1}{6}+\frac{1}{10}+\frac{1}{15}+...+\frac{1}{210}\right)\)

\(\frac{1}{2}A=\frac{1}{12}+\frac{1}{20}+\frac{1}{30}+...+\frac{1}{420}\)

\(\frac{1}{2}A=\frac{1}{3.4}+\frac{1}{4.5}+\frac{1}{5.6}+...+\frac{1}{20.21}\)

\(\frac{1}{2}A=\frac{1}{3}-\frac{1}{4}+\frac{1}{4}-\frac{1}{5}+\frac{1}{5}-\frac{1}{6}+...+\frac{1}{20}-\frac{1}{21}\)

\(\frac{1}{2}A=\frac{1}{3}-\frac{1}{21}\)

\(\frac{1}{2}A=\frac{2}{7}\)

A = \(\frac{2}{7}:\frac{1}{2}\)

A = \(\frac{4}{7}\)

5 tháng 1 2016

15/129 tickticktickyickyick nha

5 tháng 1 2016

nếu không là toán lớp mấy hả DO THANH CONG

5 tháng 8 2016

Ta có:

\(A=\frac{6}{15.18}+\frac{6}{18.21}+\frac{6}{21.24}+...+\frac{6}{87.90}\)

\(A=2.\left(\frac{3}{15.18}+\frac{3}{18.21}+\frac{3}{21.24}+...+\frac{3}{87.90}\right)\)

\(A=2.\left(\frac{1}{15}-\frac{1}{18}+\frac{1}{18}-\frac{1}{21}+\frac{1}{21}-\frac{1}{24}+...+\frac{1}{87}-\frac{1}{90}\right)\)

\(A=2.\left(\frac{1}{15}-\frac{1}{90}\right)\)

\(A=2.\frac{1}{18}=\frac{1}{9}\)

29 tháng 4 2016

a/ \(=\frac{21}{23}+\frac{125}{143}-\frac{101.21}{101.23}-\frac{1001.125}{1001.143}=0\)

b/ \(=\frac{4}{20}+\frac{8}{21}+\frac{2}{5}-\frac{3}{5}+\frac{2}{21}-\frac{10}{21}+\frac{3}{20}=\frac{7}{20}-\frac{1}{5}=\frac{4}{20}\)

c/ \(\frac{C}{2}=\frac{1}{6}+\frac{1}{12}+\frac{1}{20}+...+\frac{1}{420}=\frac{1}{2.3}+\frac{1}{3.4}+\frac{1}{4.5}+...+\frac{1}{20.21}\)

\(\frac{C}{2}=\frac{3-2}{2.3}+\frac{4-3}{3.4}+\frac{5-4}{4.5}+...+\frac{21-20}{20.21}=\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+\frac{1}{4}-\frac{1}{5}+...+\frac{1}{20}-\frac{1}{21}\)

\(\frac{C}{2}=\frac{1}{2}-\frac{1}{21}=\frac{19}{42}\Rightarrow C=\frac{19}{21}\)

14 tháng 8 2017

Đặt \(B=\frac{1}{3}+\frac{1}{6}+\frac{1}{10}+.....+\frac{1}{210}\)

  \(\frac{1}{2}B=\frac{1}{6}+\frac{1}{12}+\frac{1}{20}+...+\frac{1}{420}\)

  \(\frac{1}{2}B=\frac{1}{2.3}+\frac{1}{3.4}+\frac{1}{4.5}+...+\frac{1}{20.21}\)

   \(\frac{1}{2}B=\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+...+\frac{1}{20}-\frac{1}{21}\)

   \(\frac{1}{2}B=\frac{1}{2}-\frac{1}{21}\)

 \(\Rightarrow B=\frac{\frac{1}{2}-\frac{1}{21}}{\frac{1}{2}}=\frac{19}{21}\)

14 tháng 8 2017

\(A=\frac{1}{1+2}+\frac{1}{1+2+3}+....+\frac{1}{1+2+3+...+50}\)

\(A=\frac{1}{3}+\frac{1}{6}+\frac{1}{10}+...+\frac{1}{\frac{\left(1+50\right).50}{2}}\)

\(A=\frac{1}{3}+\frac{1}{6}+\frac{1}{10}+....+\frac{1}{1275}\)

\(A=\frac{2}{6}+\frac{2}{12}+\frac{2}{20}+....+\frac{2}{2550}\)

\(A=\frac{2}{2.3}+\frac{2}{3.4}+\frac{2}{4.5}+..+\frac{2}{50.51}\)

\(A=2\left(\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+...+\frac{1}{50}-\frac{1}{51}\right)\)

\(A=2\left(\frac{1}{2}-\frac{1}{51}\right)=2\cdot\frac{49}{102}=\frac{49}{51}\)

5 tháng 7 2018

a, A = \(\hept{\begin{cases}\\x\in\\\end{cases}ℕ/}\)x =k.k+1 ; K\(\inℕ\);k \(\le\)13

    A có 14 phần tử

b, B = \(\hept{ }X\inℕ/\)x = k . ( k+1) ; K\(\inℕ\); k \(\le\)20

     B có 21 phần tử

6 tháng 5 2015

a)\(\frac{1}{3}+\frac{1}{15}+\frac{1}{35}+...+\frac{1}{195}\)

Đặt \(C=\frac{1}{10}+\frac{1}{15}+\frac{1}{21}+...+\frac{1}{66}\)

\(\Rightarrow\frac{1}{2}C=\frac{1}{20}+\frac{1}{30}+\frac{1}{42}+...+\frac{1}{132}\)

\(\Rightarrow\frac{1}{2}C=\frac{1}{4.5}+\frac{1}{5.6}+\frac{1}{6.7}+...+\frac{1}{11.12}\)

\(\Rightarrow\frac{1}{2}C=\frac{1}{4}-\frac{1}{5}+\frac{1}{5}-\frac{1}{6}+\frac{1}{6}-\frac{1}{7}+...+\frac{1}{11}-\frac{1}{12}\)

\(\Rightarrow\frac{1}{2}C=\frac{1}{4}+\left(-\frac{1}{5}+\frac{1}{5}\right)+\left(-\frac{1}{6}+\frac{1}{6}\right)+...+\left(-\frac{1}{11}+\frac{1}{11}\right)-\frac{1}{12}\)\(\Rightarrow\frac{1}{2}C=\frac{1}{4}+0+0+...+0-\frac{1}{12}\)

\(\Rightarrow\frac{1}{2}C=\frac{1}{4}-\frac{1}{12}\)

\(\Rightarrow\frac{1}{2}C=\frac{3}{12}-\frac{1}{12}\)

\(\Rightarrow\frac{1}{2}C=\frac{2}{12}\)

\(\Rightarrow\frac{1}{2}C=\frac{1}{6}\)

\(\Rightarrow C=\frac{1}{6}:\frac{1}{2}\)

\(\Rightarrow C=\frac{1}{6}\cdot2\)

\(\Rightarrow C=\frac{2}{6}=\frac{1}{3}\)