\(48^2+52^2+52.96\)

">
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

21 tháng 9 2020

ghghfgh

21 tháng 9 2020

482 + 522 + 52.96

= 482 + 2.48.52 + 522

= ( 48 + 52 )2

= 1002 = 10 000

7 tháng 11 2016

52 . 143 - 26 . 78 - 2 . 104

= 52 . 143 - 52 . 39 - 52  . 4

= 52 ( 143 - 39 - 4 )

= 52 . 100

= 5200

7 tháng 10 2018

        \(50^2-49^2+48^2-47^2+46^2-45^2+...+4^2-3^2+2^2\)

\(=\left(50-49\right)\left(50+49\right)+\left(48-47\right)\left(48+47\right)+\left(46-45\right)\left(46+45\right)...+\left(4-3\right)\left(4+3\right)+4\)

\(=99+95+91+...+7+3+1\)

\(=\left(3+99\right).\left[\left(99-3\right):4+1\right]:2+1\)

\(=102x25:2+1=1276\)

6 tháng 6 2019

dùng hàng đẳng thức bình phương tổng 2 số là auto ra, cái chính là tách khéo léo để tạo được thành hàng đẳng thức nhá !!!

7 tháng 6 2019

a) \(498^2+996.502+502^2\)

\(=498^2+2.498.502+502^2\)

\(=\left(498+502\right)^2\)

\(=1000^2\)

\(=1000000\)

b) \(126^2-52.126+26^2\)

\(=126^2-2.26.126+26^2\)

\(=\left(126-26\right)^2\)

\(=100^2\)

\(=10000\)

11 tháng 9 2018

\(B=\frac{\left(68-52\right)\left(68^2+68.52+52^2\right)}{16}+68.52=\frac{16\left(68^2+68.52+52^2\right)}{16}+68.52\)

\(B=68^2+2.68.52+52^2=\left(68+52\right)^2=120^2\)

Câu tiếp theo làm tương tự

30 tháng 5 2017

a) \(x^2-2xy-4z^2+y^2\)

\(\Leftrightarrow\left(x^2-2xy+y^2\right)-\left(2z\right)^2\)

\(\Leftrightarrow\left(x-y\right)^2-\left(2z\right)^2\)

\(\Leftrightarrow\left[\left(x-y\right)+2z\right]\left[\left(x-y\right)-2z\right]\)

\(\Leftrightarrow\left(x-y+2z\right)\left(x-y-2z\right)\)

Tại x=6, y=-4, z=45

\(\left[6-\left(-4\right)+2.45\right]\left[6-\left(-4\right)-2.45\right]=100.\left(-80\right)=-8000\)

b) \(3\left(x-3\right)\left(x+7\right)+\left(x-4\right)^2+48\)

\(\Leftrightarrow3\left(x^2+7x-3x-21\right)+\left(x^2-4x+4\right)+48\)
\(\Leftrightarrow3x^2+21x-9x-63+x^2-4x+4+48\)

\(\Leftrightarrow4x^2+8x-11\)

Tại x=0,5 ta có:

\(4.\left(0,5\right)^2+8.0,5-11=-6\)

a)Đặt \(A=x^2-2xy-4z^2+y^2\)

\(=\left(x^2-2xy+y^2\right)-\left(2z\right)^2\)

\(=\left(x-y\right)^2-\left(2z\right)^2\)

\(=\left(x-y-2z\right)\left(x-y+2z\right)\)

Thay \(x=6;y=-4;z=45\) vào A, ta có:

\(A=\left[6-\left(-4\right)-2\cdot45\right]\left[6-\left(-4\right)+2\cdot45\right]\)

\(=100\cdot\left(-80\right)\)

\(=-8000\)

Vậy \(A=-8000\)

b) Đặt \(B=3\left(x-3\right)\left(x+7\right)+\left(x-4\right)^2+48\)

\(=3\left(x^2+7x-3x-21\right)+x^2-4x+4+48\)

\(=3x^2+12x-63+x^2-4x+52\)

\(=4x^2+8x-11\)

Thay \(x=0,5\) vào B, ta có:

\(B=4\cdot\left(0,5\right)^2+8\cdot0,5-11\)

\(=1\cdot4-11\)

\(=-6\)

Vậy \(B=-6\)

1 tháng 7 2016

\(A=\frac{\left(35+13\right)\left(35^2-35.13+13^2\right)}{48}-35.13\)

   \(=\frac{48.\left(35^2-35.13+13^2\right)}{48}-35.13\)

   \(=35^2-35.13+13^2-35.13\)

   \(=\left(35-13\right)^2\)

   \(=484\)

\(B=\frac{\left(68-52\right)\left(68^2+68.52+52^2\right)}{16}+68.52\)

    \(=\frac{16\left(68^2+68.52+52^2\right)}{16}+68.52\)

     \(=68^2+68.52+52^2+68.52\)

      \(=\left(68+52\right)^2\)

      \(=14400\)

1 tháng 7 2016

A=903,7

B=10932,52