K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

22 tháng 2 2017

Ta có : abba = 1001a + 110b 

Mà 1001 chai hết cho 11 và 110 chai hết cho 11

Nên 1001a chia hết cho 11 và 110b chia hết cho11

Suy ra abba chia hết cho 11

22 tháng 2 2017

Ta có: S = 1.2 + 2.3 + 3.4 + ....... + 99.100 + 100.101

=> 3S = 1.2.3 - 1.2.3 + 2.3.4 - 2.3.4 + ....... + 100.101.102

=> 3S = 100.101.102

=> S = 100.101.102 / 3

=> S = 343400

26 tháng 7 2018

a) Ta có :  \(n+3⋮n+2\)

\(\Rightarrow\left(n+2\right)+1⋮n+2\)

Mà  \(n+2⋮n+2\)

\(\Rightarrow1⋮n+2\)

\(\Rightarrow n+2\inƯ_{\left(1\right)}=\left\{\pm1\right\}\)

Ta có bảng sau :

n+21-1
n-1-3

Mà  \(n\in N\)\(\Rightarrow\)ko có giá trị nào của n có thể thỏa mãn đk trên :)

26 tháng 7 2018

b)  \(2n+9⋮n-3\)

\(\Rightarrow2\left(n-3\right)+15⋮n-3\)

Mà  \(2\left(n-3\right)⋮n-3\)

\(\Rightarrow15⋮n-3\)

\(\Rightarrow n-3\inƯ_{\left(15\right)}=\left\{\pm1;\pm3;\pm5;\pm15\right\}\)

Lại có :  \(n\in N\)

Ta có bảng sau :

n-31-13-35-515-15
n4 (tm)2 (tm)6 (tm) 0 (tm)8 (tm)-2 (loại)18 (tm)-12 ( loại )

Vậy  \(n\in\left\{4;2;6;0;8;18\right\}\)

24 tháng 6 2017

\(M=\frac{2}{1.2}+\frac{2}{2.3}+\frac{2}{3.4}+...+\frac{2}{99.100}\)

\(M=2\left(1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+...+\frac{1}{99}-\frac{1}{100}\right)\)

\(M=2\left(1-\frac{1}{100}\right)\)

\(M=2.\frac{99}{100}\)

\(M=\frac{99}{50}\)

\(N=\frac{3}{1.3}+\frac{3}{3.5}+\frac{3}{5.7}+...+\frac{3}{97.99}\)

\(N=\frac{3}{2}\left(1-\frac{1}{3}+\frac{1}{3}-\frac{1}{5}+\frac{1}{5}-\frac{1}{7}+...+\frac{1}{97}-\frac{1}{99}\right)\)

\(N=\frac{3}{2}\left(1-\frac{1}{99}\right)\)

\(N=\frac{3}{2}.\frac{98}{99}\)

\(N=\frac{49}{33}\)

12 tháng 1 2018

         \(n^2-2n-22\) \(⋮\)\(n+3\)

\(\Leftrightarrow\)\(\left(n-5\right)\left(n+3\right)-7\)  \(⋮\)\(n+3\)

Ta thấy:    \(\left(n-5\right)\left(n+3\right)\)\(⋮\)\(n+3\)

nên    \(7\)\(⋮\)\(n+3\)

hay    \(n+3\) \(\inƯ\left(7\right)=\left\{\pm1;\pm7\right\}\)

Ta lập bảng sau:

\(n+3\)      \(-7\)         \(-1\)              \(1\)             \(7\)

\(n\)            \(-10\)         \(-4\)           \(-2\)            \(4\)

Vậy....

28 tháng 6 2018

\(n^2+4⋮n-1\)

Mà \(n-1⋮n-1\)

\(\Leftrightarrow\hept{\begin{cases}n^2+4⋮n-1\\n^2-n⋮n-1\end{cases}}\)

\(\Leftrightarrow n+4⋮n-1\)

Mà \(n-1⋮n-1\)

\(\Leftrightarrow5⋮n-1\)

\(\Leftrightarrow n-1\inƯ\left(5\right)\)

\(\Leftrightarrow\orbr{\begin{cases}n-1=1\\n-1=5\end{cases}}\) \(\Leftrightarrow\orbr{\begin{cases}n=0\\n=6\end{cases}}\)

4 tháng 1 2018

n+1 chia hết cho n-4

=> n-4+5 chia hết cho n-4

=> n-4 chia hết cho n-4 ; 5 chia hết cho n-4

=> n-4 thuộc Ư(5)={1,5}

n-4=1 => n=5

n-5=5 => n=10

Vậy b={5,10}

4 tháng 1 2018

n + 1 \(⋮\)n - 4

=> n - 4 + 5 \(⋮\)n - 4 mà n - 4 \(⋮\)n - 4 => 5 \(⋮\)n - 4

=> n - 4 \(\in\)Ư ( 5 ) = { 1 ; 5 }

=> n \(\in\){ 5 ; 9 }

Vậy n \(\in\){ 5 ; 9 }

9 tháng 5 2019

Ta có : \(n^2+5=n^2-1+6\)

\(=n^2-n+n-1+6\)

\(=n\left(n-1\right)+\left(n-1\right)+6\)

\(=\left(n+1\right)\left(n-1\right)+6\)

Vì \(\left(n-1\right)\left(n+1\right)⋮\left(n+1\right)\)

\(\Rightarrow\)Để \(\left(n-1\right)\left(n+1\right)+6⋮\left(n+1\right)\)Thì \(6⋮n+1\)

Hay \(n+1\inƯ_6\)

Rồi tìm ra từng trường hợp nha

(n^2 + 5 ) chia hết cho (n+1)

=> (n^2 + 5 )-(n+1) chia hết cho (n+1)

=>(n2+5)-n(n+1) chia hết cho (n+1)

=>n2+5-n2-n.1 chia hết cho (n+1)

=>5-n chia hết cho (n+1)

=>[n+(-5)]-(n+1) chia hết cho (n+1)

=>n+(-5) -n -1 chia hết cho (n+1)

=>-6 chia hết cho (n+1)

=>n+1 E Ư(-6)={-6;-3;-2;-1;1;2;3;6}

Ta có bảng :

n+1-6-3-2-11236
n-7(loại)-4(loại)-3(loại)-2(loại)0125

=>n E {0;1;2;5}

Vậy ........................................................