K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

5 tháng 8 2015

2/1.3 + 2/3.5 + ... + 2/87.89

= 1/1 - 1/3 + 1/3 - 1/5 + ... + 1/87 - 1/89

= 1/1 - 1/89 

=88/89

Tick đúng cho mình nha 

5 tháng 8 2015

88/89       

14 tháng 7 2015

2/1.3 + 2/3.5 + 2/5.7 +...+ 2/97.99 
=(1/1-1/3)+(1/3-1/5)+(1/5-1/7)+...+(1/97-1/99) 
=1-1/99=98/99 

 

15 tháng 7 2019

\(\frac{2}{1.3}+\frac{2}{3.5}+\frac{2}{5.7}+...+\frac{2}{153.155}\)

\(=1-\frac{1}{3}+\frac{1}{3}-\frac{1}{5}+\frac{1}{5}-\frac{1}{7}+...+\frac{1}{153}-\frac{1}{155}\)

\(=1-\frac{1}{155}\)

\(=\frac{154}{155}\)

~Study well~

#JDW

15 tháng 7 2019

\(\frac{2}{1.3}+\frac{2}{3.5}+\frac{2}{5.7}+.......+\frac{2}{153.155}\)

\(=1-\frac{1}{3}+\frac{1}{3}-\frac{1}{5}+\frac{1}{5}-\frac{1}{7}+.......+\frac{1}{153}-\frac{1}{155}\)

\(=1-\frac{1}{155}\)

\(=\frac{154}{155}\)

12 tháng 10 2019

A=\(\frac{2}{1.3}+\frac{2}{3.5}+\frac{2}{5.7}+...+\frac{2}{49.51}\)

=\(\frac{2}{1}-\frac{2}{3}+\frac{2}{3}-\frac{2}{5}+\frac{2}{5}-\frac{2}{7}+...+\frac{2}{49}-\frac{2}{51}\)

\(2.(\frac{1}{1}-\frac{1}{3}+\frac{1}{3}-\frac{1}{5}+\frac{1}{5}-\frac{1}{7}+...+\frac{1}{49}-\frac{1}{51})\)

=2.\((1-\frac{1}{51})\)

=\(2.\frac{50}{51}\)

=\(\frac{100}{51}\)

13 tháng 1 2019

Hướng dẫn:

\(M=\frac{1^2}{1.3}+\frac{2^2}{3.5}+\frac{3^2}{5.7}+...+\frac{99^2}{197.199}\)

\(\Rightarrow4M=\frac{1.4}{1.3}+\frac{4.4}{3.5}+\frac{9.4}{5.7}+...+\frac{9801.4}{197.199}\)

\(\Rightarrow4M=\frac{2.2}{1.3}+\frac{4.4}{3.5}+\frac{6.6}{5.7}+...+\frac{198.198}{197.199}\)

Đến đoạn này bạn đưa về dạng tổng quát nhé:

\(\frac{n^2}{\left(2n-1\right)\left(2n+1\right)}=\frac{1}{4}+\frac{1}{8\left(2n-1\right)}-\frac{1}{8\left(2n+1\right)}\) (Tự phân tích)

Sau đó thay vào A. Kết quả tìm được là \(A=\frac{1}{8}-\frac{1}{8.2013}+\frac{1006}{4}=251,6249379\)

Bài này lớp 6 học rùi! 

S = 312/25

Bạn có cần giải cặn kẽ ko

30 tháng 7 2016

\(\frac{2}{1.3}+\frac{2}{3.5}+\frac{2}{5.7}+...+\frac{2}{97.99}+\frac{2}{99.101}\)

\(=1-\frac{1}{3}+\frac{1}{3}-\frac{1}{5}+\frac{1}{5}-\frac{1}{7}+...+\frac{1}{97}-\frac{1}{99}+\frac{1}{99}-\frac{1}{101}\)

\(=1-\frac{1}{101}\)

\(=\frac{100}{101}\)

30 tháng 7 2016

\(\frac{2}{1.3}+\frac{2}{3.5}+\frac{2}{5.7}+...+\frac{2}{99.101}\)

\(=\frac{1}{1}-\frac{1}{3}+\frac{1}{3}-\frac{1}{5}+\frac{1}{5}-\frac{1}{7}+...+\frac{1}{99}-\frac{1}{101}\)

\(=1-\frac{1}{101}\)

\(=\frac{101}{101}-\frac{1}{101}=\frac{100}{101}\)