Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
5.
P = ( x - 1 )( x + 2 )( x + 3 )( x + 6 ) < sửa rồi nhé :v >
= [ ( x - 1 )( x + 6 ) ][ ( x + 2 )( x + 3 ) ]
= ( x2 + 5x - 6 )( x2 + 5x + 6 ) (1)
Đặt t = x2 + 5x
(1) = ( t - 6 )( t + 6 )
= t2 - 36 ≥ -36 ∀ t
Dấu "=" xảy ra khi t = 0
=> x2 + 5x = 0
=> x( x + 5 ) = 0
=> x = 0 hoặc x = -5
=> MinP = -36 <=> x = 0 hoặc x = -5
6.
a) ( x2 + x )2 + 4( x2 + x ) = 12
Đặt t = x2 + x
pt <=> t2 + 4t = 12
<=> t2 + 4t - 12 = 0
<=> t2 - 2t + 6t - 12 = 0
<=> t( t - 2 ) + 6( t - 2 ) = 0
<=> ( t - 2 )( t + 6 ) = 0
<=> ( x2 + x - 2 )( x2 + x + 6 ) = 0
<=> x2 + x - 2 = 0 hoặc x2 + x + 6 = 0
+) x2 + x - 2 = 0
=> x2 - x + 2x - 2 = 0
=> x( x - 1 ) + 2( x - 1 ) = 0
=> ( x - 1 )( x + 2 ) = 0
=> x = 1 hoặc x = -2
+) x2 + x + 6 = ( x2 + x + 1/4 ) + 23/4 = ( x + 1/2 )2 + 23/4 ≥ 23/4 > 0 ∀ x
=> x ∈ { -2 ; 1 }
b) x2 - 12x + 36 = 81
<=> ( x - 6 )2 = ( ±9 )2
<=> x - 6 = 9 hoặc x - 6 = -9
<=> x = 15 hoặc x = -3
6) c) x3 - x2 + x = 1
<=> x3 - x2 + x - 1 = 0
<=> (x3 - x2) + (x - 1) = 0
<=> x2 (x - 1) + (x - 1) = 0
<=> (x - 1) (x2 + 1) = 0
=> x - 1 = 0 hoặc x2 + 1 = 0
* x - 1 = 0 => x = 1
* x2 + 1 = 0 => x2 = -1 => x = -1
Vậy x = 1 hoặc x = -1
Bài 5:
a) Đặt \(A=\left(3^2+1\right)\left(3^4+1\right)\left(3^8+1\right)\left(3^{16}+1\right)\)
\(\Rightarrow8A=\left(3^2-1\right)\left(3^2+1\right)\left(3^4+1\right)\left(3^8+1\right)\left(3^{16}+1\right)\)
\(\Rightarrow8A=\left(3^4-1\right)\left(3^4+1\right)\left(3^8+1\right)\left(3^{16}+1\right)\)
\(\Rightarrow8A=\left(3^8-1\right)\left(3^8+1\right)\left(3^{16}+1\right)\)
\(\Rightarrow8A=\left(3^{16}-1\right)\left(3^{16}+1\right)\)
\(\Rightarrow8A=3^{32}-1\)
\(\Rightarrow A=\frac{3^{32}-1}{8}\)
b) (7x+6)2 + (5-6x)2 - (10-12x)(7x+6)
=(7x+6)2 + (5-6x)2 - 2(5-6x)(7x+6)
\(=\left(7x+6-5+6x\right)^2\)
\(=\left(13x+1\right)^2\)
a/ => 6x3 + x2 - 2x = 0
=> x (6x2 + x - 2) = 0
=> x (6x2 + 4x - 3x - 2) = 0
=> x [ 2x (3x + 2) - (3x + 2) ] =0
=> x (3x + 2) (2x - 1) = 0
=> x = 0
hoặc 3x + 2 = 0 => 3x = -2 => x = -2/3
hoặc 2x - 1 = 0 => 2x = 1 => x = 1/2
Vậy x = 0; x = -2/3 ; x = 1/2
Câu b,c,d tương tự
Thực hiện phép tính:
a. ( 2x - 6 )( 12x2 + 9x + 36 )
b. ( 2x4 + x3 - 3x2 + 5x - 2 ) : ( 5x2 - 5x + 5 )
a, 25^2 - 15^2 = ( 25 - 15 )( 25 + 15) = 10 . 40 = 400
b, 87^2 + 73^2 - 27^2 - 13^2
= 87^2 - 27^2 + 73^2 - 13^2
= ( 87 - 27)( 87 + 27) + (73 - 13 )(73+ 13)
= 60 . 114 + 60 . 86
= 60( 114 + 86)
= 60 .200
= 12000
c, x^3 + 27 + 9 x^2 + 27x
= x^3 + 27x + 9x^2 + 27
=(x + 3)^3
thay x =97 ta có
= (97 + 3)^3
= 100^3
=1000000
d, 1,6^2 + 4.0,8.3,4 + 3,4^2 ( nè 3,4^2 chứ không phải 3,42)
= 1,6^2 + 2.2.0,8.3,4 + 3,4^2
=1,6^2 + 2.1,6.3,4 + 3,4^2
= (1,6 + 3,4)^2
= 5^2
= 25
e, x = 11 => 12 =x + 1 thay vào ta có
x^4 - ( x+ 1)x^3 + (x+1)x^2 -(x+1)x + 11
= x^4 - x^4 - x^13 + x^3 + x^2 - x^2 - x + 11
= -x + 11
= -11 + 11
= 0
ĐÚng ch o tui nha
a) (x - 4)2 - 36 = 0
=> (x - 4)2 = 36
=> x - 4 = 6 hoặc x - 4 = -6
=> x = 10 hoặc x = -2
b) hình như sai đề bn ạ
c) x(x - 5) - 4x + 20 = 0
=> x(x - 5) - 4(x - 5) = 0
=> (x - 5)(x - 4) = 0
=> x - 5 = 0 hoặc x - 4 = 0
=> x = 5 hoặc x = 4
b) x3y3 + x2y2+ 4 = x3y3- 4xy + (xy)2- 2xy.2 + 22 = xy [ (xy)^2 - 2^2 ] + ( xy - 2)^2
= xy(xy-2)(xy+2)+ (xy-2)^2
= (xy-2) [ xy(xy+2) + ( xy-2) ]
= (xy-2) [ (xy)2 + 2xy + xy - 3 ]
= ( xy - 3) [ (xy)2 + 3xy - 3]
3) (chưa bik làm)
4) x4 +x3 + 6x2 +5x +5
= x4 +x3 + x2 + 5x2 + 5x +5
= x2( x2+x+ 1 ) + 5( x2+x+ 1 )
= ( x2+ 5 ) ( x2+x+ 1 )
5) x4 - 2x3 - 12x2 +12x + 36
= x4 - 2x3 - 6x2 - 6x2 + 12x + 36=
x2 ( x2 - 2x - 6) - 6 ( x2 - 2x - 6)
= (x^2 - 6) ( x2 - 2x - 6) 6) x8y8 + x4y4 + 1 = \(\left[\left(xy\right)^4\right]^2+2x^4y^4+1-x^4y^4\)=\(\left[\left(xy\right)^4+1\right]^2-\left[\left(xy\right)^2\right]^2\)
= \(\left(x^4y^4+1-x^2y^2\right)\left(x^4y^4+1+x^2y^2\right)\)
( mik ko bik đúng hay sai đâu nha) mik thấy nó thành nhân tử thì mik tách thôi
a/ 34.54-(152+1)(152-1)
=154-(154-152+152-1)
=154-154+1=1
b/ x4-12x3+12x2-12x+111
=x4-x3-11x3+11x2+x2-x-11x+11+100
=x3(x-1)-11x2(x-1)+x(x-1)-11(x-1)+100
=(x3-11x2+x-11)(x-11)+100
Thay x=11 vào ta được:
=(113-11.112+11-11)(11-11)+100
=0.10+100=100
\(\left(x-4\right)^2-36=0\)
\(\Leftrightarrow\left(x-4\right)^2=36\)
\(\Leftrightarrow\left[{}\begin{matrix}x-4=6\\x-4=-6\end{matrix}\right.\)
\(\Leftrightarrow\left[{}\begin{matrix}x=10\\x=-2\end{matrix}\right.\)
Vậy ...
\(4x^2-12x=-9\)
\(\Rightarrow\left(2x\right)^2-2.2x.3+3^2=0\)
\(\Rightarrow\left(2x-3\right)^2=0\)
\(\Rightarrow2x-3=0\)
\(\Rightarrow2x=3\)
\(\Rightarrow x=\dfrac{3}{2}\)
Vậy ...
\(\left(x+8\right)^2=121\)
\(\Rightarrow\left[{}\begin{matrix}x+8=11\\x+8=-11\end{matrix}\right.\)
\(\Rightarrow\left[{}\begin{matrix}x=3\\x=-19\end{matrix}\right.\)
Vậy ...
a.(x-4)2 -36=0
⇔(x-4-6)(x-4+6)=0
⇔(x-10))(x+2)=0
✱x-10=0 => x=10
✱ x+2 =0 => x=-2
Vậy x=10 và x=-2
b) 4x2 -12 + 9 =0
⇔ (2x)2 -2.2x.3 + 32 = 0
⇔(2x-3)2 =0
⇔2x-3=0
⇔ x= \(\dfrac{3}{2}\)
c) (x+8)2 -121=0
⇔ (x+8)2 -112 =0
⇔ (x+8-11)(x+8+11) =0
⇔ (x-3) (x+19) =0
\(\begin{matrix}x-3=0\\x+19=0\end{matrix}\) ⇔ \(\begin{matrix}x=3\\x=-19\end{matrix}\)
1) \(206^2-36=206^2-6^2=\left(206-6\right)\left(206+6\right)\)
\(=200.212=42400\)
2) \(\left(x-4\right)^2.2-\left(12x+x^2\right).2=6\)
\(\Rightarrow x^2-16x+32-24x-2x^2=6\)
\(\Rightarrow40x=26\Rightarrow x=\dfrac{13}{20}\)