Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
b./ \(\Leftrightarrow\frac{x+1}{2009}+1+\frac{x+2}{2008}+1+\frac{x+3}{2007}+1=\frac{x+10}{2000}+1+\frac{x+11}{1999}+1+\frac{x+12}{1998}+1.\)
\(\Leftrightarrow\frac{x+2010}{2009}+\frac{x+2010}{2008}+\frac{x+2010}{2007}-\frac{x+2010}{2000}-\frac{x+2010}{1999}-\frac{x+2010}{1998}=0\)
\(\Leftrightarrow\left(x+2010\right)\left(\frac{1}{2009}+\frac{1}{2008}+\frac{1}{2007}-\frac{1}{2000}-\frac{1}{1999}-\frac{1}{1998}\right)=0\)(b)
Mà \(\frac{1}{2009}+\frac{1}{2008}+\frac{1}{2007}-\frac{1}{2000}-\frac{1}{1999}-\frac{1}{1998}< 0\)
(b) \(\Leftrightarrow x+2010=0\Leftrightarrow x=-2010\)
a./
\(\Leftrightarrow\frac{x+1}{2}+\frac{x+1}{3}+\frac{x+1}{4}-\frac{x+1}{5}-\frac{x+1}{6}=0.\)
\(\Leftrightarrow\left(x+1\right)\left(\frac{1}{2}+\frac{1}{3}+\frac{1}{4}-\frac{1}{5}-\frac{1}{6}\right)=0\)(a)
Mà \(\frac{1}{2}+\frac{1}{3}+\frac{1}{4}-\frac{1}{5}-\frac{1}{6}>0\)
(a) \(\Leftrightarrow x+1=0\Leftrightarrow x=-1\)
Bài 1.
\(\frac{75}{100}+\frac{18}{21}+\frac{19}{32}+\frac{1}{4}+\frac{3}{21}+\frac{3}{32}\)
\(=\left(\frac{75}{100}+\frac{1}{4}\right)+\left(\frac{18}{21}+\frac{3}{21}\right)+\left(\frac{19}{32}+\frac{3}{32}\right)\)
\(=1+1+\frac{11}{16}\)
\(=2+\frac{11}{16}\) \(=\frac{43}{16}\)
a) (\(6\frac{2}{7}.x+\frac{3}{7}\))=-1.\(\frac{11}{5}+\frac{3}{7}\)
(\(6\frac{2}{7}.x+\frac{3}{7}\))=\(\frac{-62}{35}\)
\(\frac{44}{7}.x\)=\(\frac{-62}{35}-\frac{3}{7}\)
\(\frac{44}{7}.x=\frac{-77}{35}\)
x=\(\frac{-77}{35}:\frac{44}{7}\)=\(\frac{539}{1540}\)
Bài 2:
b: x+25%x=-1,25
=>1,25x=-1,25
hay x=-1
c: x-75%x=1/4
=>1/4x=1/4
hay x=1
Bài 2:
a: =3/2-11/4=6/4-11/4=-5/4
b: =-49/6-17/2=-49/6-51/6=-100/6=-50/3
a
\(5\frac{4}{7}:x+=13\)
\(\frac{39}{7}:x=13\)
\(x=\frac{39}{7}:13\)
\(x=\frac{3}{7}\)
\(\frac{4}{7}x=\frac{9}{8}-0,125\)
\(\frac{4}{7}x=1\)
\(x=1:\frac{4}{7}\)
\(x=\frac{7}{4}=1\frac{3}{4}\)
\(A=\frac{8}{9}\cdot\frac{15}{16}\cdot\frac{24}{25}\cdot...\cdot\frac{360}{361}\cdot\frac{399}{400}\)
\(A=\frac{2\cdot4\cdot3\cdot5\cdot4\cdot6\cdot...\cdot18\cdot20\cdot19\cdot21}{3\cdot3\cdot4\cdot4\cdot5\cdot5\cdot...\cdot19\cdot19\cdot20\cdot20}\)
\(A=\frac{2\cdot21}{3\cdot20}\)
\(A=\frac{7}{10}\)
\(B=\frac{9}{8}\cdot\frac{16}{15}\cdot\frac{25}{24}\cdot...\cdot\frac{441}{440}\cdot\frac{484}{483}\)
\(B=\frac{3\cdot3\cdot4\cdot4\cdot5\cdot5\cdot...\cdot21\cdot21\cdot22\cdot22}{2\cdot4\cdot3\cdot5\cdot4\cdot6\cdot...\cdot20\cdot22\cdot21\cdot23}\)
\(B=\frac{3\cdot22}{2\cdot23}=\frac{33}{23}\)
\(C=\frac{17}{23}.\left(\frac{7}{61}+\frac{28}{61}+\frac{26}{61}\right)\)
\(C=\frac{17}{23}\cdot1=\frac{17}{23}\)
a) \(\frac{9}{20}\) c) \(\frac{-55}{4}\)
b) \(\frac{116}{75}\) d) \(\frac{-76}{45}\)
đúng hết đấy nhé mình tính kĩ lắm ko sai đâu
chúc may mắn
\(1\frac{1}{5}\cdot1\frac{1}{6}\cdot1\frac{1}{7}\cdot...\cdot1\frac{1}{1998}\cdot1\frac{1}{1999}\)
\(=\frac{6}{5}\cdot\frac{7}{6}\cdot\frac{8}{7}\cdot...\cdot\frac{1999}{1998}\cdot\frac{2000}{1999}\)
\(=\frac{6\cdot7\cdot8\cdot...\cdot1999\cdot2000}{5\cdot6\cdot7\cdot...\cdot1998\cdot1999}\)
\(=\frac{2000}{5}=400\)
\(1\frac{1}{5}‧1\frac{1}{6}‧1\frac{1}{7}‧.......‧1\frac{1}{1998}‧1\frac{1}{1999}\)
\(=\frac{6}{5}‧\frac{7}{6}\frac{8}{7}‧.......‧\frac{1999}{1998}‧\frac{2000}{1999}\)
\(=\frac{6‧7‧8‧.......‧1999‧2000}{5‧6‧7‧.......‧1998‧1999}\)
\(=400\)