Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Câu 1: Ta có: A = \(x^3+y^3+3xy=x^3+y^3+3xy\times1=x^3+y^3+3xy\left(x+y\right)\)
\(=\left(x+y\right)^3=1^3=1\)
Câu 2: Ta có: \(B=x^3-y^3-3xy=\left(x-y\right)\left(x^2+xy+y^2\right)-3xy\)
\(=x^2+xy+y^2-3xy=x^2-2xy+y^2=\left(x-y\right)^2=1^2=1\)
Câu 3: Ta có: \(C=x^3+y^3+3xy\left(x^2+y^2\right)-6x^2.y^2\left(x+y\right)\)
\(=x^3+y^3+3xy\left(x^2+2xy+y^2-2xy\right)+6x^2y^2\)
\(=x^3+y^3+3xy\left(x+y\right)^2-3xy.2xy+6x^2y^2\)
\(=x^3+y^3+3xy.1-6x^2y^2+6x^2y^3\)
\(=x^3+y^3+3xy\left(x+y\right)=\left(x+y\right)^3=1^3=1\)
a, tỉ số chu vi của hai tam giác cũng là tỉ số đồng dạng k=2/3
b, ta có chuvi ABC/chuvi MNP=2/3 (1)
mà : chuvi MNP-chuvi ABC=15 SUY RA chuvi MNP=chuvi ABC+15, THAY VÀO (1) TA ĐC
chuvi ABC/chuvi ABC+15 =2/3. QUY ĐỒNG GIẢI RA ĐC chuvi ABC=30, chuvi MNP=45
C, tỉ số dtABC/dt MNP=(2/3)^2=4/9, MÀ dtMNP=81
SUY RA dt ABC=4/9 nhân 81=30 cm^2
a) (a + b)2 = a2 + 2ab + b2
= a2 - 2ab + b2 + 4ab
= (a - b)2 + 4ab
Thay a - b = 8 và ab = 10, ta có :
(a - b)2 + 4ab = 82 + 4*10 = 64 + 40 = 104
Vậy (a + b)2 = 104
b) a3 - b3 = (a - b)(a2 + ab + b2) (1)
Ta có :
a - b = 8
=> (a - b)2 = 82
a2 - 2ab + b2 = 64
a2 + b2 = 64 - 2ab
mà ab = 4 nên
a2 + b2 = 64 - 2*4 = 64 - 8 = 56 (2)
Thay (2) vào (1), ta có
(a - b)(a2 + ab + b2) = (a - b)(56 + ab)
mà a - b = 8 và ab = 4 nên
(a - b)(56 + ab) = 8*(56 + 4) = 8*60 = 480
Vậy a3 - b3 = 480;
a, Ta có
A= x(x+2)+y(y-2)-2xy +37
=x2+2x+y2-2y-2xy+37
=x2-2xy+y2+2(x-y)+37
=(x-y)2+2(x-y)+37
Vì x-y=7
=>(x-y)2+2(x-y)+37=72+14+37=100
KL
b, Ta có B=x2+4y2-2x+10+4xy-4y
=x2+4xy+4y2-2x-4y+10
=(x+2y)2-2(x+2y)+10
Vì x+2y=5
=>(x+2y)2-2(x+2y)+10=52-10+10=25
KL
1992 = 199 x 199 = 39601
39601