Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(\frac{1}{3}+\frac{1}{6}+\frac{1}{12}+\frac{1}{48}+\frac{1}{96}+\frac{1}{192}\)
= \(\left(\frac{1}{3}+\frac{1}{6}\right)+\left(\frac{1}{12}+\frac{1}{24}\right)+\left(\frac{1}{48}+\frac{1}{96}\right)+\frac{1}{192}\)
= \(\left(\frac{1}{2}+\frac{1}{8}\right)+\left(\frac{1}{32}+\frac{1}{192}\right)\)
= \(\frac{5}{8}+\frac{1}{192}\)
= \(\frac{121}{192}\)
28+62.a.(a.1-a:1)+28.8+28
=(28+28+28.8)+62.a.(a-a)
=(28.10)+62.a.0
=280+0
=280
28+62.a.(a.1-a:1)+28.8+28
=28.10+62.a.(a-a)
=280+62.a.0
=280
\(E=\frac{1}{2.2}+\frac{1}{3.3}+\frac{1}{4.4}+...+\frac{1}{49.49}\)
Ta có \(\frac{1}{2.2}>\frac{1}{2.3}\)
\(\frac{1}{3.3}>\frac{1}{3.4}\)
...
\(\frac{1}{49.49}>\frac{1}{49.50}\)
=> \(E=\frac{1}{2.2}+\frac{1}{3.3}+...+\frac{1}{49.49}>\frac{1}{2.3}+\frac{1}{3.4}+...+\frac{1}{49.50}\)
\(=\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+...+\frac{1}{49}-\frac{1}{50}=\frac{1}{2}-\frac{1}{50}=\frac{24}{50}=\frac{12}{25}=F\)
=> E > F
\(A=\dfrac{1}{2\times2}+\dfrac{1}{3\times3}+...+\dfrac{1}{100\times100}\)
\(A=1-\dfrac{1}{2}+\dfrac{1}{2}-\dfrac{1}{3}+...+\dfrac{1}{99}-\dfrac{1}{100}\)
\(A=1-\dfrac{1}{100}=\dfrac{99}{100}\)
Quy đồng 99/100 với 3/4, ta có:
\(\dfrac{99}{100}=\dfrac{396}{400};\dfrac{3}{4}=\dfrac{300}{400}\)
So sánh A với 3/4: \(\dfrac{99}{100}>\dfrac{3}{4}\left(\dfrac{396}{400}>\dfrac{300}{400}\right)\)