Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Ta có:
\(\begin{array}{l}5,4\; - 0,2 < a < 5,4\; + 0,2\;\left( {cm} \right);\;\\7,2 - 0,2 < b < 7,2 + 0,2\;\left( {cm} \right);\\9,7 - 0,1 < c < 9,7 + 0,1\;\left( {cm} \right)\end{array}\)
\(\begin{array}{l} \Rightarrow 5,4 + 7,2 + 9,7\; - 0,5 < a + b + c < 5,4 + 7,2 + 9,7\; + 0,5\;\left( {cm} \right)\\ \Leftrightarrow 22,3\; - 0,5 < a + b + c < 22,3 + 0,5\;\left( {cm} \right)\end{array}\)
Vậy chu vi \(P = a + b + c\) của tam giác đó là \(P = 22,3\;cm \pm 0,5\;cm\)
Mẫu 1:
+) Số trung bình: \(\overline x = \frac{{0,1 + 0,3 + 0,5 + 0,5 + 0,3 + 0,7}}{6} = 0,4\)
+) Phương sai \({S^2} = \frac{1}{6}\left( {0,{1^2} + 0,{3^2} + 0,{5^2} + 0,{5^2} + 0,{3^2} + 0,{7^2}} \right) - 0,{4^2} \approx 0,0367\)
+) Độ lệch chuẩn \(S = \sqrt {{S^2}} \approx 0,19\)
Mẫu 2:
+) Số trung bình: \(\overline x = \frac{{1,1 + 1,3 + 1,5 + 1,5 + 1,3 + 1,7}}{6} = 1,4\)
+) Phương sai \({S^2} = \frac{1}{6}\left( {1,{1^2} + 1,{3^2} + 1,{5^2} + 1,{5^2} + 1,{3^2} + 1,{7^2}} \right) - 1,{4^2} \approx 0,0367\)
+) Độ lệch chuẩn \(S = \sqrt {{S^2}} \approx 0,19\)
Mẫu 3:
+) Số trung bình: \(\overline x = \frac{{1 + 3 + 5 + 5 + 3 + 7}}{6} = 4\)
+) Phương sai \({S^2} = \frac{1}{6}\left( {{1^2} + {3^2} + {5^2} + {5^2} + {3^2} + {7^2}} \right) - {4^2} \approx 3,67\)
+) Độ lệch chuẩn \(S = \sqrt {{S^2}} \approx 1,9\)
Kết luận:
Số liệu ở mẫu 2 hơn số liệu ở mẫu 1 là 1 đơn vị, số trung bình của mẫu 2 hơn số trung bình mẫu 1 là 1 đơn vị, còn phương sai và độ lệch chuẩn là như nhau.
Số liệu ở mẫu 3 gấp 10 lần số liệu mẫu 1, số trung bình, phương sai và độ lệch chuẩn của mẫu 3 lần lượt gấp 10 lần, 100 lần và 10 lần mẫu 1.
a) chu vi là:
[(0,5 + 0,1) + (0,2 + 0,03)] x 2 = 1,66 (m)
b) diện tích là:
(0,5 + 0,1) x (0,2 + 0,03) = 0,138 (m2)
Đ/s: a) 1,66 m
b) 0,138 m2
Chậc, lâu ngày ko sờ tới hình học 9 cx hơi quên quên :V
\(\overrightarrow{MA}.\overrightarrow{MB}=MA.MB.\cos\left(\overrightarrow{MA};\overrightarrow{MB}\right)=MA.MB\)
Tương tự \(\overrightarrow{MC}.\overrightarrow{MD}=MC.MD\)
Ta cần chứng minh \(\Delta MAD\sim\Delta MCB\)
\(\widehat{M}:chung\)
\(\widehat{MBC}=\overrightarrow{MDA}\) (góc nội tiếp cùng chắn \(\stackrel\frown{AC}\) )
\(\Rightarrow\Delta MAD\sim\Delta MCB\left(g.g\right)\)
\(\Rightarrow MA.MB=MC.MD\Rightarrowđpcm\)
Cái hình bên cạnh lm tương tự chứ còn câu b thì chịu òi (chưa thể nghĩ ra :V)
Lời giải:
\(27^{mx^3-2x^2+3x-2}=\frac{1}{9^{-mx^2-x+2}}\Leftrightarrow 3^{3(xm^3-2x^2+3x-2)}=3^{2(mx^2+x-2)}\)
\(\Leftrightarrow 3(mx^3-2x^2+3x-2)=2(mx^2+x-2)\)
\(\Leftrightarrow 3mx^3-x^2(2m+6)+7x-2=0\)
\(\Leftrightarrow (3x-2)(mx^2-2x+1)=0\)
Để PT ban đầu có ba nghiệm phân biệt thì \(mx^2-2x+1=0\) phải có hai nghiệm phân biệt khác \(\frac{2}{3}\). Khi đó:
\(\left\{\begin{matrix} m\neq 0\\ m(\frac{2}{3})^2-\frac{4}{3}+1\neq 0\\ \Delta' =1-m>0\end{matrix}\right.\Rightarrow \left\{\begin{matrix} m\neq 0\\ m\neq \frac{3}{4}\\ m<1\end{matrix}\right.\)
Đáp án D chính xác nhất, nhưng chưa quét hết nghiệm.
Ta có : \(0,1+0,2+0,3+...0,9+0,10...+0,19\)
\(=\left(0,1+0,19\right)+\left(0,2+0,18\right)+\left(0,3+0,17\right)+....+\left(0,9+0,11\right)+0,10\)\(=0,20+0,20+0,20+0,20+...+0,20+0,10\)
\(=0,20\times9+0,10\)
\(=1,8+0,10\)
\(=1,9\)
Vậy : \(0,1+0,2+0,3+...0,9+0,10...+0,19=1,9\)
=)))))))))))