Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Q = \(\frac{1}{3.5}+\frac{1}{5.7}+...+\frac{1}{2013.2015}\)
Q = \(\frac{1}{2}.\left(\frac{2}{3.5}+\frac{2}{5.7}+...+\frac{1}{2013.2015}\right)\)
Q = \(\frac{1}{2}.\left(\frac{1}{3}-\frac{1}{2015}\right)\)
Q = \(\frac{1}{2}.\frac{2012}{6045}=\frac{1002}{6045}\)
\(Q=\frac{1}{3.5}+\frac{1}{5.7}+\frac{1}{7.9}+...+\frac{1}{2013.2015}\)
\(\Rightarrow Q.2=2.\left(\frac{1}{3.5}+\frac{1}{5.7}+\frac{1}{7.9}+...+\frac{1}{2013.2015}\right)\)
\(\Rightarrow Q.2=\frac{2}{3.5}+\frac{2}{5.7}+\frac{2}{7.9}+...+\frac{2}{2013.2015}\)
\(\Rightarrow Q.2=\frac{1}{3}-\frac{1}{5}+\frac{1}{5}-\frac{1}{7}+\frac{1}{7}-\frac{1}{9}+...+\frac{1}{2013}-\frac{1}{2015}\)
\(\Rightarrow Q.2=\frac{1}{3}-\frac{1}{2015}\)
\(\Rightarrow Q.2=\frac{2012}{6045}\)
\(\Rightarrow Q=\frac{2012}{6045}.\frac{1}{2}=\frac{1006}{6045}\)
Mk tinh nhẩm, nên ko bt kết quả có đúng ko
nên bn thử tính lại kết quả nha!!!
Chúc bn hok tốt!!!
=1/3-1/5+1/5-1/7+1/7-1/9+....+1/97-1/99
= 1/3 -1/99
=32/99
tích cho mình nha
=1/3-1/5+1/7-1/7+1/9-1/9+...+1/97-1/99
=1/3-1/99
=32/99
\(S=\frac{1}{1.3}-\frac{1}{2.4}+\frac{1}{3.5}-\frac{1}{4.6}+\frac{1}{5.7}-\frac{1}{6.8}+\frac{1}{7.9}-\frac{1}{8.10}\)
\(=\left(\frac{1}{1.3}+\frac{1}{3.5}+\frac{1}{5.7}+\frac{1}{7.9}\right)-\left(\frac{1}{2.4}-\frac{1}{4.6}-\frac{1}{6.8}-\frac{1}{8.10}\right)\)
\(=\frac{1}{2}\left(1-\frac{1}{3}+\frac{1}{3}-...+\frac{1}{7}-\frac{1}{9}\right)-\frac{1}{2}\left(\frac{1}{2}-\frac{1}{4}+\frac{1}{4}-...+\frac{1}{8}-\frac{1}{10}\right)\)
\(=\frac{1}{2}\left(1-\frac{1}{9}\right)-\frac{1}{2}\left(\frac{1}{2}-\frac{1}{10}\right)\)
\(=\frac{1}{2}.\frac{8}{9}-\frac{1}{2}.\frac{2}{5}\)
\(=\frac{4}{9}-\frac{1}{5}\)
\(=\frac{11}{45}\)
1/5.6 + 1/6.7 + 1/7.8 +...+ 1/24.25
=1/5 - 1/6 + 1/6-1/7 +1/7-1/8 + ... + 1/24-1/25
=> Kết quả là: 1/5 - 1/25 = 4/25
b) 2/1.3 + 2/3.5 + 2/5.7 + 2/7.9+...+ 2/99.101
=2/1-2/3 + 2/3-2/5 + 2/5-2/7 + 2/7-2/9 + ... + 2/99-2/101
=> kết quả là 2/1 - 2/101 =200/101
a) \(\frac{1}{5.6}+\frac{1}{6.7}+\frac{1}{7.8}+...+\frac{1}{24.25}\)
=\(\frac{1}{5}-\frac{1}{6}+\frac{1}{6}-\frac{1}{7}+\frac{1}{7}-\frac{1}{8}+...+\frac{1}{24}-\frac{1}{25}\)
=\(\frac{1}{5}-\frac{1}{25}\)
=\(\frac{4}{25}\)
b)\(\frac{2}{1.3}+\frac{2}{3.5}+\frac{2}{5.7}+\frac{2}{7.9}+...+\frac{2}{99.101}\)
=\(2.\left(\frac{1}{1.3}+\frac{1}{3.5}+\frac{1}{5.7}+\frac{1}{7.9}+...+\frac{1}{99.101}\right)\)
=\(2.\left(\frac{1}{1}-\frac{1}{3}+\frac{1}{3}-\frac{1}{5}+\frac{1}{5}-\frac{1}{7}+\frac{1}{7}-\frac{1}{9}+...+\frac{1}{99}-\frac{1}{101}\right)\)
=\(2.\left(\frac{1}{1}-\frac{1}{101}\right)\)
=\(2.\frac{100}{101}\)
=\(\frac{200}{101}\)
\(S=\frac{1}{1.3}+\frac{1}{3.5}+...+\frac{1}{97.99}\)
\(=\frac{1}{2}\left(1-\frac{1}{3}+\frac{1}{3}-\frac{1}{5}+...+\frac{1}{97}-\frac{1}{99}\right)\)
\(=\frac{1}{2}\left(1-\frac{1}{99}\right)\)
\(=\frac{1}{2}.\frac{98}{99}=\frac{49}{99}\)
S=\(\frac{1}{1.3}+\frac{1}{3.5}+\frac{1}{5.7}+\frac{1}{7.9}+......+\frac{1}{95.97}+\frac{1}{97.99}\)
S=\(\frac{1}{2}.\left(1-\frac{1}{3}+\frac{1}{3}-\frac{1}{5}+\frac{1}{5}-\frac{1}{7}+.......+\frac{1}{97}-\frac{1}{99}\right)\)
S=\(\frac{1}{2}.\left(1-\frac{1}{99}\right)\)
S=\(\frac{1}{2}.\frac{98}{99}\)
S=\(\frac{49}{99}\)
Ta có :
\(A=\frac{3}{1.3}+\frac{3}{3.5}+\frac{3}{5.7}+...+\frac{3}{49.51}\)
\(A=\frac{3}{2}\left(\frac{2}{1.3}+\frac{2}{3.5}+\frac{2}{5.7}+...+\frac{2}{49.51}\right)\)
\(A=\frac{3}{2}\left(\frac{1}{1}-\frac{1}{3}+\frac{1}{3}-\frac{1}{5}+\frac{1}{5}-\frac{1}{7}+...+\frac{1}{49}-\frac{1}{51}\right)\)
\(A=\frac{3}{2}\left(1-\frac{1}{51}\right)\)
\(A=\frac{3}{2}.\frac{50}{51}\)
\(A=\frac{25}{17}\)
Vậy \(A=\frac{25}{17}\)
Chúc bạn học tốt ~
\(A=\frac{3}{1.3}+\frac{3}{3.5}+\frac{3}{5.7}+...+\frac{3}{49.51}\)
\(A=\frac{3}{2}\left(1-\frac{1}{3}+\frac{1}{3}-\frac{1}{5}+\frac{1}{5}-\frac{1}{7}+...+\frac{1}{49}-\frac{1}{51}\right)\)
\(A=\frac{3}{2}\left(1-\frac{1}{51}\right)\)
\(A=\frac{3}{2}.\frac{50}{51}\)
\(A=\frac{25}{17}\)
\(B=\frac{21}{4}\left(\frac{3333}{1212}+\frac{3333}{2020}+\frac{3333}{3030}+\frac{3333}{4242}\right)\)
\(B=\frac{21}{4}\left(\frac{33}{12}+\frac{33}{20}+\frac{33}{30}+\frac{33}{42}\right)\)
\(B=\frac{21}{4}\left(\frac{33}{3.4}+\frac{33}{4.5}+\frac{33}{5.6}+\frac{33}{6.7}\right)\)
\(B=\frac{21}{4}.33.\left(\frac{1}{3}-\frac{1}{4}+\frac{1}{4}-\frac{1}{5}+\frac{1}{5}-\frac{1}{6}+\frac{1}{6}-\frac{1}{7}\right)\)
\(B=\frac{21}{4}.33.\left(\frac{1}{3}-\frac{1}{7}\right)\)
\(B=\frac{21}{4}.33.\frac{4}{21}\)
\(B=\left(\frac{21}{4}.\frac{4}{21}\right).33\)
\(B=33\)
\(C=\frac{1}{1.3}+\frac{1}{3.5}+\frac{1}{5.7}+...+\frac{1}{97.99}\)
\(C=\frac{1}{2}\left(1-\frac{1}{3}+\frac{1}{3}-\frac{1}{5}+\frac{1}{5}-\frac{1}{7}+...+\frac{1}{97}-\frac{1}{99}\right)\)
\(C=\frac{1}{2}\left(1-\frac{1}{99}\right)\)
\(C=\frac{1}{2}.\frac{98}{99}\)
\(C=\frac{49}{99}\)
\(A=\frac{1}{3.5}+\frac{1}{5.7}+...+\frac{1}{13.15}=\frac{1}{2}\left(\frac{2}{3.5}+\frac{2}{5.7}+...+\frac{2}{13.15}\right)\)
\(=\frac{1}{2}\left(\frac{1}{3}-\frac{1}{5}+\frac{1}{5}-\frac{1}{7}+...+\frac{1}{13}-\frac{1}{15}\right)=\frac{1}{2}\left(\frac{1}{3}-\frac{1}{15}\right)=\frac{1}{2}.\frac{4}{15}=\frac{2}{15}\)
\(A=\frac{1}{3\cdot5}+\frac{1}{5\cdot7}+\frac{1}{7\cdot9}+...+\frac{1}{13\cdot15}=\frac{1}{2}\left(\frac{2}{3\cdot5}+\frac{2}{5\cdot7}+\frac{2}{7\cdot9}+...+\frac{2}{13\cdot15}\right)\)
\(=\frac{1}{2}\left(\frac{1}{3}-\frac{1}{5}+\frac{1}{5}-\frac{1}{7}+...+\frac{1}{13}-\frac{1}{15}\right)\)
\(=\frac{1}{2}\left(\frac{1}{3}-\frac{1}{15}\right)=\frac{1}{2}\cdot\frac{4}{15}=\frac{2}{15}\)
\(A=\frac{1}{3\cdot5}+\frac{1}{5\cdot7}+\frac{1}{7\cdot9}+...+\frac{1}{99\cdot101}\)
\(A=\frac{1}{2}\cdot\left(\frac{2}{3\cdot5}+\frac{2}{5\cdot7}+\frac{2}{7\cdot9}+...+\frac{2}{99\cdot101}\right)\)
\(A=\frac{1}{2}\cdot\left(\frac{1}{3}-\frac{1}{5}+\frac{1}{5}-\frac{1}{7}+\frac{1}{7}-\frac{1}{9}+...+\frac{1}{99}-\frac{1}{101}\right)\)
\(A=\frac{1}{2}\cdot\left(\frac{1}{3}-\frac{1}{101}\right)=\frac{1}{2}\cdot\frac{97}{303}=\frac{97}{606}\)
\(B=\frac{2}{4\cdot7}+\frac{2}{7\cdot10}+\frac{2}{10\cdot13}+...+\frac{2}{100\cdot103}\)
\(B=\frac{2}{3}\cdot\left(\frac{3}{4\cdot7}+\frac{3}{7\cdot10}+\frac{3}{10\cdot13}+...+\frac{3}{100\cdot103}\right)\)
\(B=\frac{2}{3}\cdot\left(\frac{1}{4}-\frac{1}{7}+\frac{1}{7}-\frac{1}{10}+\frac{1}{10}-\frac{1}{13}+...+\frac{1}{100}-\frac{1}{103}\right)\)
\(B=\frac{2}{3}\cdot\left(\frac{1}{4}-\frac{1}{103}\right)=\frac{2}{3}\cdot\frac{99}{412}=\frac{33}{206}\)
\(C=\dfrac{1}{3\cdot5}+\dfrac{1}{5\cdot7}+...+\dfrac{1}{37\cdot39}\)
\(2C=\dfrac{2}{3\cdot5}+\dfrac{2}{5\cdot7}+...+\dfrac{2}{37\cdot39}\)
\(2C=\dfrac{1}{3}-\dfrac{1}{5}+\dfrac{1}{5}-\dfrac{1}{7}+...+\dfrac{1}{37}-\dfrac{1}{39}\)
\(2C=\dfrac{1}{3}-\dfrac{1}{39}\)
\(2C=\dfrac{4}{13}\)
\(C=\dfrac{2}{13}\)
\(C=\frac{1}{3.5}+\frac{1}{5.7}+\frac{1}{7.9}+...+\frac{1}{37.39}\)
\(C=\frac{1}{2}.\left(\frac{2}{3.5}+\frac{2}{5.7}+\frac{2}{7.9}+...+\frac{2}{37.39}\right)\)
\(C=\frac{1}{2}.\left(\frac{1}{3}-\frac{1}{5}+\frac{1}{5}-\frac{1}{7}+\frac{1}{7}-\frac{1}{9}+...+\frac{1}{37}-\frac{1}{39}\right)\)
\(C=\frac{1}{2}.\left(\frac{1}{3}-\frac{1}{39}\right)\)
\(C=\frac{1}{2}.\frac{12}{39}\)
\(C=\frac{4}{26}=\frac{2}{13}\)
\(\frac{1}{3.5}+\frac{1}{5.7}+\frac{1}{7.9}+...+\frac{1}{87.89}\)
= \(\frac{1}{2}.\left(\frac{1}{3}-\frac{1}{5}+\frac{1}{5}-\frac{1}{7}+...+\frac{1}{87}-\frac{1}{89}\right)\)
= \(\frac{1}{2}.\left(\frac{1}{3}-\frac{1}{89}\right)\)
= \(\frac{1}{2}.\frac{86}{267}=\frac{43}{267}\)
~~~
Đáp số to quá, tớ không chắc là mình đúng đâu.
#Sunrise
=1/3-1/5+1/5-1/7+1/7-1/9+.....+1/87-1/89
=1/3-1/89
=86/267