\(3+\frac{3}{1+2}+\frac{3}{1+2+3}+\frac{3}{1+2+3+4}+....">
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

14 tháng 5 2017

S=\(3\left(1+\frac{1}{1+2}+\frac{1}{1+2+3}+...+\frac{1}{1+2+3+...+100}\right)\)

\(S=3\left(1+\frac{1}{3}+\frac{1}{6}+\frac{1}{10}+...+\frac{1}{5050}\right)\)

\(S=3.\frac{1}{2}\left(\frac{1}{2}+\frac{1}{6}+\frac{1}{12}+\frac{1}{20}+...+\frac{1}{10100}\right)\)

\(S=\frac{3}{2}\left(\frac{1}{1.2}+\frac{1}{2.3}+\frac{1}{3.4}+\frac{1}{4.5}+...+\frac{1}{100.101}\right)\)

\(S=\frac{3}{2}\left(\frac{1}{1}-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+...+\frac{1}{100}-\frac{1}{101}\right)\)

\(S=\frac{3}{2}\left(1-\frac{1}{101}\right)\)

\(S=\frac{3}{2}.\frac{100}{101}=\frac{150}{101}\)

14 tháng 5 2017

S = 3 + 1 + 1/2 +....

24 tháng 6 2018

a) 2 +4+6+8+...+2018

= ( 2018+2) x 1009 : 2

= 2020 x 1009 : 2

= 1009 x (2020:2)

= 1009 x 1010

= 1 019 090

b) S = 10 + 102 + 103 + ...+ 10100

=> 10.S = 102 + 103 + 104 +...+ 10101

=> 10.S - S = 10101-10

9.S=10101- 10

\(\Rightarrow S=\frac{10^{101}-10}{9}\)

c) \(S=\frac{1}{5}+\frac{1}{5^2}+\frac{1}{5^3}+...+\frac{1}{5^{100}}\)

\(\Rightarrow5S=1+\frac{1}{5}+\frac{1}{5^2}+...+\frac{1}{5^{99}}\)

\(5S-S=1-\frac{1}{5^{100}}\)

\(4S=1-\frac{1}{5^{100}}\)

\(S=\frac{1-\frac{1}{5^{100}}}{4}\)

e cx ko nx, e ms hok lp 7 thoy, sang hè ms lp 8! e sr cj nhiều nha!

24 tháng 6 2018

d) \(S=\frac{1!}{3!}+\frac{2!}{4!}+\frac{3!}{5!}+...+\frac{2018!}{2020!}\)

\(S=\frac{1}{1.2.3}+\frac{1.2}{1.2.3.4}+\frac{1.2.3}{1.2.3.4.5}+...+\frac{1.2.3...2018}{1.2.3...2020}\)

\(S=\frac{1}{2.3}+\frac{1}{3.4}+\frac{1}{4.5}+...+\frac{1}{2019.2020}\)

\(S=\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+\frac{1}{4}-\frac{1}{5}+...+\frac{1}{2019}-\frac{1}{2020}\)

\(S=\frac{1}{2}-\frac{1}{2020}\)

\(S=\frac{1009}{2020}\)

21 tháng 6 2018

a;b;c có những câu tương tự rồi, ko giải lại nx

d) \(S=\frac{1!}{3!}+\frac{2!}{4!}+...+\frac{2018!}{2020!}\)

\(S=\frac{1}{2.3}+\frac{1}{3.4}+\frac{1}{4.5}+...+\frac{1}{2019.2020}\)

\(S=\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+...+\frac{1}{2019}-\frac{1}{2020}\)

\(S=\frac{1}{2}-\frac{1}{2020}\)

b tự làm nốt nha

24 tháng 6 2018

......................?

mik ko biết

mong bn thông cảm 

nha ................

20 tháng 8 2015

A=(2+1/315).1/651-3/315.[3+(651-1)/651]-4.1/315.1/651+12/315

A=(2+1/315).1/651-3.1/315.(3+1-1/651)-4.1/135.1/651+12.1/315

Đặt 1/315=a;1/651=b ta có:

A=(2+a)b-3a(4-b)-4ab+12a

A=2b+ab-12a+3ab-4ab+12a

A=2b=2.1/315=2/315



 


 

26 tháng 2 2018

bạn Đoàn Thị Thùy Linh làm đúng rồi đó 

Bạn tham khảo bài bạn í nhé :)))))

Chục bạn học tốt !!!!!

5 tháng 10 2016

Ta có: \(2.S=2.\left(\frac{1}{1^4+1^2+1}+...+\frac{2011}{2011^4+2011^2+1}\right)\)

Xét hạng tử tống quát: \(\frac{2.n}{n^4+n^2+1}=\frac{2.n}{\left(n^4+2n^2+1\right)-n^2}=\frac{\left(n^2+n+1\right)-\left(n^2-n+1\right)}{\left(n^2-n+1\right)\left(n^2+n+1\right)}\)\(=\frac{1}{n^2-n+1}-\frac{1}{n^2+n+1}\)

Từ đó: \(\frac{2.1}{1^4+1^2+1}=\frac{1}{1}-\frac{1}{3}\)

          \(\frac{2.2}{2^4+2^2+1}=\frac{1}{3}-\frac{1}{7}\)

          .....

          \(\frac{2.2011}{2011^4+2011^2+1}=\frac{1}{4042111}-\frac{1}{4046133}\)

Từ đó => 2.S= \(\frac{1}{1}-\frac{1}{3}+\frac{1}{3}-\frac{1}{7}+...+\frac{1}{4042111}-\frac{1}{4046133}\)=\(1-\frac{1}{4046133}\)=\(\frac{4046132}{4046133}\)

=> S\(=\frac{2023066}{4046133}\)