Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(\frac{7256.4375-725}{4375.7255+3650}=\frac{\left(7255+1\right).4375-725}{4375.7255+3650}=\frac{7255.4375+4375-725}{7255.4375+3650}=\frac{7255.4375+3650}{7255.4375+3650}=1\)
\(\frac{3^{10}.11+3^{10}.5}{3^9.2^4}=\frac{3^{10}\left(11+5\right)}{3^9.2^4}=\frac{3.16}{16}=3\)
\(\frac{2^{10}.13+2^{10}.65}{2^8.104}=\frac{2^{10}\left(13+65\right)}{2^8.104}=\frac{2^2.78}{26.2^2}=\frac{78}{26}=3\)
\(\left(125^3.7^5-175^5.5\right):2001^{2002}\) ( bạn xem lại đề xem sai đâu ko nhé )
Để Thiên giải câu 3 cho:
(1253.75 -1755;5):20012001
\(=\left[\left(5^3\right)^3.7^5-175^5:5\right]:2001^{2002}\)
\(=\left(5^9.7^5-175:5\right):2001^{2002}\)
\(=\left(5^5.5^4.7^4.7-175^4.175:5\right):2001^{2002}\)
\(=\left(5^5.35^4.7-175^4.35\right):2001^{2002}\)
\(=\left(5^4.35^4.5.7-175^4.35\right):2001^{2002}\)
\(=\left(175^4.35-175^4.35\right):2001^{2002}\)
\(=0:2001^{2002}\)
\(=0\)
Gợi ý
bn thực hiện phép tính tử mẫu bình thường , khi ra nhưng số trùng nhau bn gạch ra nháp cho đến nhưng số tối giản là ra nha
chúc bn
học tốt
A = \(\frac{3^{10}.11+3^{10}.5}{3^9.2^4}\)
= \(\frac{3^{10}\left(11+5\right)}{3^9.2^4}\)
= \(\frac{3^{10}.16}{3^9.2^4}\)
= \(\frac{3^{10}.2^4}{3^9.2^4}=3\)
B = \(\frac{2^{10}.13+2^{10}.65}{2^8.104}\)
= \(\frac{2^{10}\left(13+65\right)}{2^8.104}\)
= \(\frac{2^{10}.78}{2^8.104}\)
= \(\frac{2^{10}.13.2.3}{2^8.2^3.13}\)
= \(\frac{2^{11}.13.3}{2^{11}.13}=3\)
\(A=\dfrac{72^3.54^2}{108^4}=\dfrac{\left(2^3.3^2\right)^3.\left(2.3^3\right)^2}{\left(2^2.3^3\right)^4}=\dfrac{2^9.3^6.2^2.3^6}{2^8.3^{12}}=\dfrac{2^{11}.3^{12}}{2^8.3^{12}}=2^3=8\)
\(B=\dfrac{3^{11}.11+3^{10}.5}{3^{10}.\left(11+5\right)}=\dfrac{3^{10}\left(3.11+5\right)}{3^{10}\left(11+5\right)}=\dfrac{38}{16}=\dfrac{19}{8}\)
A= 3^10.( 11+5 ) / 3^9. 2^4
A= 3^10. 16 /3 ^9 . 16
A= 3^10/3^9= 3
B= 2^10. ( 13 +65) / 2^8.104
B= 2^10. 78/ 2^8.104
B= 2 ^10.2.39/ 2^8 .2.52
B= 2^11.39/ 2^9.52
B= 2 ^ 2. (39/ 52)
B= 4 . 39/52 = 3
C= (2^3.3^2)^3.( 2.3.3^2 )^2 / (2^2.3^3)^4
C= 2^9.3^6/ 2^2.3^2.3^4
C= 2^9.3^6/ 2^2.3^6
C= 2^9/2^2= 2^5=32
D= 11.3^29-3^30/ 2^2.3^28
D= 3^29.(1- 3)/ 2^2.3^28
D= 3^29.(-2)/ 2^2.3^28
D= 3. (-2/2^2)
D = 3. (-1/2)= -3/2
A=\(\frac{72^3.54^2}{108^4}=\frac{\left(2^3.3^2\right)^3.\left(2.3^3\right)^2}{\left(2^2.3^3\right)^4}=\frac{2^9.3^6.2^2.3^6}{2^8.3^{12}}=\frac{2^{11}.3^{12}}{2^8.3^{12}}=2^3=8\)
B= \(\frac{4^6.3^4.9^5}{6^{12}}=\frac{2^{12}.3^4.3^{10}}{2^{12}.3^{12}}=\frac{2^{12}.3^{14}}{2^{12}.3^{12}}=3^2=9\)
c) \(\frac{2^{13}+2^5}{2^{10}+2^2}=\frac{2^5\left(2^8+1\right)}{2^2\left(2^8+1\right)}=2^3=8\)
1.
\(\frac{72^3\times54^2}{108^4}=\frac{\left(8\times9\right)^3\times\left(27\times2\right)^2}{\left(27\times4\right)^4}=\frac{\left(2^3\times3^2\right)^3\times\left(3^3\times2\right)^2}{\left(3^3\times2^2\right)^4}=\frac{\left(2^3\right)^3\times\left(3^2\right)^3\times\left(3^3\right)^2\times2^2}{\left(3^3\right)^4\times\left(2^2\right)^4}=\frac{2^9\times3^6\times3^6\times2^2}{3^{12}\times2^8}=2^3=8\)
2.
\(\frac{4^6\times3^4\times9^5}{6^{12}}=\frac{\left(2^2\right)^6\times3^4\times\left(3^2\right)^5}{\left(2\times3\right)^{12}}=\frac{2^{12}\times3^4\times3^{10}}{2^{12}\times3^{12}}=3^2=9\)
3.
\(\frac{2^{13}+2^5}{2^{10}+2^2}=\frac{2^5\times\left(2^8+1\right)}{2^2\times\left(2^8+1\right)}=2^3=8\)
a) \(25.8^3-23.8^3=8^3\left(25-23\right)\)
\(=8^3.2\)
\(=2^9.2=2^{10}\)
b) \(5^4-2.5^3=5^3.5-2.5^3\)
\(=5^3\left(5-2\right)\)
\(=5^3.3=375\)
c)\(2.4^3-4^3.7-6.4^3=4^3\left(2-7-6\right)\)
\(=4^3.-11=-704\)
d)\(3^2.10^3-\left[13^2-\left(5^2.4+2^2.15\right)\right].10^3\)
\(=3^2.10^3-\left[13^2-2^2\left(5^2+15\right)\right].10^3\)
\(=3^2.10^3-\left[13^2-2^2.40\right].10^3\)
\(=10^3\left[3^2-9\right]\)
\(=0\)
a) 8
b) 0