Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
S=(2010+5).[(2010-5):5+1]:2
=2015.[2005:5+1]:2
=2015.402:2
=2015.201
=405015
P=2000-1995+............+10-5(400 số hạng)
P=(2000-1995)+(1990-1985)+.............+(10-5) (200 cặp số)
P=5+5+5...........5 (200 thừa số 5)
P=5.200
P=1000
Số các số hạng của S:
(2010-5):5+1=402 số
Tổng của S là:
(5+2010)x402:2=405015
Đáp/Số:405015
P=5+5+5+...+5
Số các số hạng của P là:
(2000-5):5+1=400 số hạng
Vậy P có 400 thừa số 5
P=5x400
P=2000.
Bài 1:
a) [ (1/6 + 1/10 + 1/15) : (1/6 + 1/10 - 1/15) phần 1/2 - 1/3 + 1/4 - 1/5 ] : (1/4 - 1/6)
= [ (1/6 : 1/6) + (1/10 : 1/10) - (1/15 : 1/15) phần 30/60 - 20/60 + 15/60 - 12/60 ] : (3/12 - 2/12)
= [ 1 + 1 - 1 phần 13/60 ] : 1/12
= [ 1 : 13/60 ] x 12
= 60/13 x 12
=720/ 13
b) (3/20 + 1/2 - 1/15) x 12/49 phần 3 và 1/3 + 2/9
= (9/60 + 30/60 - 4/60) x 12/49 phần 10/3 + 2/9
= 7/12 x 12/49 phần 30/9 + 2/9
= 1/7 : 32/9
= 1/7 x 9/32
= 9/224
\(\frac{1}{5}+\frac{4}{10}+\frac{9}{15}+\frac{16}{20}+1+\frac{36}{30}+\frac{49}{35}+\frac{64}{40}+\frac{81}{45}\)
\(=\left(\frac{1}{5}+\frac{81}{45}\right)+\left(\frac{4}{10}+\frac{49}{35}\right)+\left(\frac{9}{15}+\frac{49}{35}\right)+\left(\frac{16}{20}+\frac{36}{30}\right)+1\)
\(=2+2+2+2+1\)
\(=2\times4+1\)
\(=9\)
~ Hok tốt ~
B=2006 * 2008 -3 / 2005 + 2005 * 2008
B=(2005+1)* 2008 -3 / 2005 +2005 *2008
B=2005 * 2008 + 2008 -3 / 2005 +2005*2008
B=2005 * 2008 + 2005 / 2005 +2005 * 2008
B= 1
a; \(\dfrac{1}{4}\) + \(\dfrac{2}{5}\) + \(\dfrac{6}{8}\) + \(\dfrac{9}{15}\) + \(\dfrac{8}{1}\)
= (\(\dfrac{1}{4}\) + \(\dfrac{6}{8}\)) + (\(\dfrac{2}{5}\) + \(\dfrac{9}{15}\)) + \(\dfrac{8}{1}\)
= (\(\dfrac{1}{4}\) + \(\dfrac{3}{4}\)) + (\(\dfrac{2}{5}\) + \(\dfrac{3}{5}\)) + 8
= 1 + 1 + 8
= 2 + 8
= 10
b; \(\dfrac{1}{2}\) + \(\dfrac{2}{4}\) + \(\dfrac{3}{6}\) + \(\dfrac{4}{8}\) + \(\dfrac{5}{10}\) + \(\dfrac{6}{12}\) + \(\dfrac{7}{14}\) + \(\dfrac{8}{16}\) + \(\dfrac{10}{20}\)
= \(\dfrac{1}{2}\) + \(\dfrac{1}{2}\) x (\(\dfrac{2}{2}\) + \(\dfrac{3}{3}\) + \(\dfrac{4}{4}\) + \(\dfrac{5}{5}\)+ \(\dfrac{6}{6}+\dfrac{7}{7}+\dfrac{8}{8}\) + \(\dfrac{10}{10}\))
= \(\dfrac{1}{2}\) + \(\dfrac{1}{2}\) x (1 + 1 +1 + 1+ 1+ 1+ 1 +1)
= \(\dfrac{1}{2}\) + \(\dfrac{1}{2}\) x 1 x 8
= \(\dfrac{1}{2}\) + \(\)\(\dfrac{1}{2}\) x 8
= \(\dfrac{1}{2}\) + 4
= \(\dfrac{9}{2}\)
a; \(\dfrac{1}{4}\) + \(\dfrac{2}{5}\) + \(\dfrac{6}{8}\) + \(\dfrac{9}{15}\) + \(\dfrac{8}{1}\)
= (\(\dfrac{1}{4}\) + \(\dfrac{6}{8}\)) + (\(\dfrac{2}{5}\) + \(\dfrac{9}{15}\)) + 8
= (\(\dfrac{1}{4}\) + \(\dfrac{3}{4}\)) + (\(\dfrac{2}{5}\) + \(\dfrac{3}{5}\)) + 8
= 1 + 1 + 8
= 2 + 8
= 10
b; \(\dfrac{1}{2}\) + \(\dfrac{2}{4}\) + \(\dfrac{3}{6}\) + \(\dfrac{4}{8}\) + \(\dfrac{5}{10}\) + \(\dfrac{6}{12}\) + \(\dfrac{7}{14}\) + \(\dfrac{8}{16}\) + \(\dfrac{9}{18}\) + \(\dfrac{10}{20}\)
= \(\dfrac{1}{2}\) + \(\dfrac{1}{2}\) + \(\dfrac{1}{2}\) + \(\dfrac{1}{2}\) + \(\dfrac{1}{2}\) + \(\dfrac{1}{2}\) + \(\dfrac{1}{2}\) + \(\dfrac{1}{2}\) + \(\dfrac{1}{2}\) + \(\dfrac{1}{2}\)
= \(\dfrac{1}{2}\) x 10
= 5
\(N=\frac{1}{1.5}+\frac{1}{5.10}+\frac{1}{10.15}+\frac{1}{15.20}+...+\frac{1}{2005.2010}\)
\(=\frac{1}{5}+\frac{1}{5}\left(\frac{5}{5.10}+\frac{5}{10.15}+...+\frac{5}{2005.2010}\right)\)
\(=\frac{1}{5}+\frac{1}{5}\left(\frac{1}{5}-\frac{1}{10}+\frac{1}{10}-\frac{1}{15}+...+\frac{1}{2005}-\frac{1}{2010}\right)\)
\(=\frac{1}{5}+\frac{1}{5}\left(\frac{1}{5}-\frac{1}{2010}\right)\)
\(=\frac{1}{5}+\frac{1}{5}.\frac{410}{2010}\)
\(=\frac{1}{5}+\frac{401}{10050}\)
Tự tính tiếp hị rồi rút gọn ra
bn chịu khó dịch bởi vì mk ko thuận viết bằng PHÂN SỐ lắm , mong bn thông cảm
N= 1/1*5 + 1/5*10 + 1/10*15 + ... + 1/2005*2010
N = 1- 1/5 + 1/5 - 1/10 + ... + 1/2005 - 1/2010
N = \(1-\frac{1}{2010}=\frac{2010}{2010}-\frac{1}{2010}\)
N = \(\frac{2009}{2010}\)
Đây là bài làm của mk
chúc bn học tốt !