\(3\left(x-3\right)\left(x+7\right)+\left(x-4\right)^2...">
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

30 tháng 5 2017

a) \(x^2-2xy-4z^2+y^2\)

\(\Leftrightarrow\left(x^2-2xy+y^2\right)-\left(2z\right)^2\)

\(\Leftrightarrow\left(x-y\right)^2-\left(2z\right)^2\)

\(\Leftrightarrow\left[\left(x-y\right)+2z\right]\left[\left(x-y\right)-2z\right]\)

\(\Leftrightarrow\left(x-y+2z\right)\left(x-y-2z\right)\)

Tại x=6, y=-4, z=45

\(\left[6-\left(-4\right)+2.45\right]\left[6-\left(-4\right)-2.45\right]=100.\left(-80\right)=-8000\)

b) \(3\left(x-3\right)\left(x+7\right)+\left(x-4\right)^2+48\)

\(\Leftrightarrow3\left(x^2+7x-3x-21\right)+\left(x^2-4x+4\right)+48\)
\(\Leftrightarrow3x^2+21x-9x-63+x^2-4x+4+48\)

\(\Leftrightarrow4x^2+8x-11\)

Tại x=0,5 ta có:

\(4.\left(0,5\right)^2+8.0,5-11=-6\)

a)Đặt \(A=x^2-2xy-4z^2+y^2\)

\(=\left(x^2-2xy+y^2\right)-\left(2z\right)^2\)

\(=\left(x-y\right)^2-\left(2z\right)^2\)

\(=\left(x-y-2z\right)\left(x-y+2z\right)\)

Thay \(x=6;y=-4;z=45\) vào A, ta có:

\(A=\left[6-\left(-4\right)-2\cdot45\right]\left[6-\left(-4\right)+2\cdot45\right]\)

\(=100\cdot\left(-80\right)\)

\(=-8000\)

Vậy \(A=-8000\)

b) Đặt \(B=3\left(x-3\right)\left(x+7\right)+\left(x-4\right)^2+48\)

\(=3\left(x^2+7x-3x-21\right)+x^2-4x+4+48\)

\(=3x^2+12x-63+x^2-4x+52\)

\(=4x^2+8x-11\)

Thay \(x=0,5\) vào B, ta có:

\(B=4\cdot\left(0,5\right)^2+8\cdot0,5-11\)

\(=1\cdot4-11\)

\(=-6\)

Vậy \(B=-6\)

23 tháng 8 2019

\(A=x^2-2xy-4z^2+y^2\)

\(=\left(x-y\right)^2-\left(2z\right)^2\)

\(=\left(x-y+2z\right)\left(x-y-2z\right)\)

\(=\left(6+4+45\right)\left(6+4-45\right)\)

\(=-1925\)

30 tháng 7 2018

C=\(\left(x-1\right)x^2-4x\left(x-1\right)+4\left(x-1\right)=\left(x-1\right)\left(x^2-4x+4\right)=\left(x-1\right)\left(x-2x-2x+4\right)\)
C= \(\left(x-1\right)\left(x-2\right)\left(x-2\right)\)
bạn thay x vào rồi tính là được
B=\(x\left(2x-y\right)-z\left(y-2x\right)=x\left(2x-y\right)+z\left(2x-y\right)=\left(2x-y\right)\left(x+z\right)\)
bạn thay x,y,z tính là ok
Bài a mình k chắc lắm nhưng nghĩ là thay vào rồi tính

31 tháng 7 2018

còn câu a) thì sao???????????? @_@

30 tháng 11 2016

các bạn làm giùm mih đi câu nào cũng được

a) \(P=\left(x+2\right)^3+\left(x-2\right)^3-2x\left(x^2+12\right)\)

   \(P=x^3+6x^2+12x+8+x^3-6x^2+12x-8-2x^3-24x\)

   \(P=0\)

   => P không phụ thuộc vào giá trị của biến x

b) \(Q=\left(x-1\right)^3-\left(x+1\right)^3+6\left(x+1\right)\left(x-1\right)\)

   \(Q=x^3-2x^2+2x-1-x^3-2x^2-2x-1+6x^2-6\)

   \(Q=2x^2-8\)

=> Q phụ thuộc vào giá trị của biến x

13 tháng 9 2016

\(P=\left(x+2+x-2\right)\left(x^2+4x+4-x^2+4+x^2-4x+4\right)-2x^3-24x\)

   \(=2x.\left(x^2+16\right)-2x^3-24x\)

     \(=2x^3+32x-2x^3-24x\)

    =8x

24 tháng 8 2015

mẹ ơi , nổ mắt con ròi @@

11 tháng 8 2016

quá nổ ấy chứ lòi lun rùi @@@@@@@@@@@@@@@@@@@@@@@@

2 tháng 9 2016

bn j ơi đề có sai ko z

17 tháng 8 2020

a) \(5x^2-2x\left(3x+\frac{3}{2}\right)=-x^2-3x=-x\left(x+3\right)=-3\left(3+3\right)=-18\)

b) \(3x\left(x-4y\right)-\frac{12}{5}y\left(y-5x\right)=3x^2-\frac{12}{5}y^2=3\left(x^2-\frac{4}{5}y^2\right)\)

\(=3\left(4^2-\frac{4}{5}.5^2\right)=3.\left(-4\right)=-12\)

c) \(\left(x-2\right)^2-\left(x+7\right)\left(x-7\right)=x^2-4x+4-x^2+49=-4x+53=-4.3+53=41\)

d) \(x^2+12x+36=\left(x+6\right)^2=\left(64+6\right)^2=70^2=4900\)

e) \(\left(x-3\right)^2-\left(x-4\right)\left(x+4\right)=x^2-6x+9-x^2+16=-6x+25=-6\left(-1\right)+25\)

= 31

f) \(\left(3x+2y\right)^2-4y\left(3x+y\right)=9x^2+12xy+4y^2-12xy-4y^2=9x^2=9\left(-\frac{1}{3}\right)^2=1\)

17 tháng 8 2020

a, \(5x^2-2x\left(3x+\frac{3}{2}\right)=-x^2-3x\)

Thay x = 3 vào biểu thức trên ta cs : \(-3^2-3.3=-9-9=-18\)

b, \(3x\left(x-4y\right)-\frac{12}{5}y\left(y-5x\right)=3x^2-\frac{12}{5}y^2\)

Thay x = 4 ; y = 5 vào biểu thức trên ta có : \(3.4^2-\frac{12}{5}.5^2=-12\)