Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
![](https://rs.olm.vn/images/avt/0.png?1311)
a) ( 3x3 + 4x2y) : x2 - ( 10xy + 15y2) : (5y)
= ( 3x + 4y) - ( 2x + 3y)
= 7xy - 5xy
thay x = 2,y= -5 vào biểu thức,ta có:
{7.2.(-5)} - { 7.2.(-5)} = -70b) (3x4 + 1/3x2
![](https://rs.olm.vn/images/avt/0.png?1311)
\(A=x^3-3x^2+3x-1\\ A=x^3-3x^2.1+3x.1^2-1^3\\ A=\left(x-1\right)^3\)
Thay x=101 vào biểu thức trên ta được kết quả là 100^3= 1000000
![](https://rs.olm.vn/images/avt/0.png?1311)
a) x2 + 4x + 4 = x2 + 2 . x . 2 + 22 = (x+ 2)2
Với x = 98: (98+ 2)2 =1002 = 10000
b) x3 + 3x2 + 3x + 1 = x3 + 3 . 1 . x2 + 3 . x .12+ 13 = (x + 1)3
Với x = 99: (99+ 1)3 = 1003 = 1000000
áp dụng hằng đẳng thức thứ 1
a) \(\left(x+2\right)^2\)
Thay x = 98 :
\(\left(98+2\right)^2\)\(=100^2=10000\)
Áp dụng hằng đẳng thức thứ 4
\(\left(x+1\right)^3\)
Thay x = 99
\(\left(99+1\right)^2\)\(=100^2=10000\)
![](https://rs.olm.vn/images/avt/0.png?1311)
1.a)\(\frac{x^3}{x^2-4}-\frac{x}{x-2}-\frac{2}{x+2}\)
\(=\frac{x^3}{\left(x+2\right)\left(x-2\right)}-\frac{x}{x-2}-\frac{2}{x+2}\)
Để biểu thức được xác định thì:\(\left(x+2\right)\left(x-2\right)\ne0\)\(\Rightarrow x\ne\pm2\)
\(\left(x+2\right)\ne0\Rightarrow x\ne-2\)
\(\left(x-2\right)\ne0\Rightarrow x\ne2\)
Vậy để biểu thức xác định thì : \(x\ne\pm2\)
b) để C=0 thì ....
1, c , bn Nguyễn Hữu Triết chưa lm xong
ta có : \(/x-5/=2\)
\(\Rightarrow\orbr{\begin{cases}x-5=2\\x-5=-2\end{cases}}\Rightarrow\orbr{\begin{cases}x=7\\x=3\end{cases}}\)
thay x = 7 vào biểu thứcC
\(\Rightarrow C=\frac{4.7^2\left(2-7\right)}{\left(7-3\right)\left(2+7\right)}=\frac{-988}{36}=\frac{-247}{9}\)KL :>...
thay x = 3 vào C
\(\Rightarrow C=\frac{4.3^2\left(2-3\right)}{\left(3-3\right)\left(3+7\right)}\)
=> ko tìm đc giá trị C tại x = 3
a) \({x^2} - 4x + 4 = {x^2} - 2.x.2 + {2^2} = {\left( {x - 2} \right)^2}\)
Thay \(x = 102\) vào biểu thức ta được \({\left( {102 - 2} \right)^2} = {100^2} = 10000\)
b) \({x^3} + 3{x^2} + 3x + 1 = {\left( {x + 1} \right)^3}\)
Thay x=999 vào biểu thức ta được \({\left( {999 + 1} \right)^3} = {1000^3} = 1000000000\)