\(M=\frac{z^5\left(x+y^2\right)\left(x^2-y...">
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

Thay x;y;z vào sẽ có biểu thức

M=\(\frac{\left(-5\right)^5.\left(\left(-4\right)+16^2\right)\left(\left(-4\right)^2-16^3\right)\left(\left(-4\right)^2+16^2\right)}{\left(-4\right)^2+16^2+\left(-5\right)^2+1}=0\)

Bạn cho mk nha!

Thay x;y;z vào sẽ có biểu thức

M=\(\frac{\left(-5\right)^5.\left(\left(-4\right)+16^2\right)\left(\left(-4\right)^2-16^3\right)\left(\left(-4\right)^2+16^2\right)}{\left(-4\right)^2+16^2+\left(-5\right)^2+1}=0\)

Bạn cho mk nha!

22 tháng 7 2020

a) Thay x = \(\sqrt{2}\)vào biểu thức ta có : 

\(A=\left(\sqrt{2}+1\right)\left[\left(\sqrt{2}\right)^2-2\right]=\left(\sqrt{2}+1\right).\left(2-2\right)=0\)

Giá trị của A khi x = \(\sqrt{2}\)là 0

b) Ta có \(B=\frac{2x^23x-2}{x+2}=\frac{6x^3-2}{x+2}\)

Thay x = 3 vào B ta có : \(B=\frac{6.3^3-2}{3+2}=\frac{160}{5}=32\)

Giá trị của B khi x = 3 là 32

d) Đặt \(\frac{x}{3}=\frac{y}{5}=k\Rightarrow x=3k;y=5k\)

Khi đó D = \(\frac{5\left(3k\right)^2+3.\left(5k\right)^2}{10\left(3k\right)^2-3\left(5k\right)^2}=\frac{45k^2+75k^2}{90k^2-75k^2}=\frac{120k^2}{15k^2}=8\)

=> D = 8

e) E = \(\left(1+\frac{z}{x}\right)\left(1+\frac{x}{y}\right)\left(1+\frac{y}{z}\right)=\frac{x+z}{x}.\frac{x+y}{y}.\frac{y+z}{z}=\frac{\left(x+y\right)\left(x+z\right)\left(y+z\right)}{xyz}\)

Lại có x + y + z = 0

=> x + y = -z

=> x + z = - y 

=> y + z = - x

Khi đó E = \(\frac{-xyz}{xyz}=-1\)

\(\left(a^5b^2xy^2z^{n-1}\right)\left(-\frac{5}{3}ax^5y^2z\right)^3=-\frac{125}{27}.a^8b^2x^{16}y^7z^{n+2}\)

Hệ số \(\frac{-125}{27}\)

Biến : a8b2x16y7zn + 2

22 tháng 7 2020

câu c bạn ghi đề rõ hơn thì mình sẽ giải luôn

7 tháng 2 2019

Nhanh k cho nè

7 tháng 2 2019

làm lần lượt nhá,dài dòng quá khó coi.ahihihi!

\(\frac{1-\frac{1}{\sqrt{49}}+\frac{1}{49}-\frac{1}{7\left(\sqrt{7}\right)^2}}{\frac{\sqrt{64}}{2}-\frac{4}{7}+\left(\frac{2}{7}\right)^2-\frac{4}{343}}=\frac{1-\frac{1}{7}+\frac{1}{49}-\frac{1}{343}}{4-\frac{4}{7}+\frac{4}{49}-\frac{4}{343}}\)

\(=\frac{1-\frac{1}{7}+\frac{1}{49}-\frac{1}{343}}{4\left(1-\frac{1}{7}+\frac{1}{49}-\frac{1}{343}\right)}=\frac{1}{4}\)

4 tháng 10 2016

\(\frac{x}{2013}=\frac{y}{2014}=\frac{z}{2015}\Rightarrow\frac{2014.2015.x}{2013.2014.2015}=\)\(\frac{y.2013.2015}{2013.2014.2015}=\frac{2013.2014.z}{2013.2014.2015}\)

\(\Rightarrow2014.2015.x=y.2013.2015=z.2013.2014\)

\(\Rightarrow x=2013;y=2014;z=2015\)

Đến đây bạn tự thay vào rồi tính nhé!

1 tháng 3 2020

áp dụng tính chất của dãy tỉ số bằng nhau ta có:\(\frac{ }{ }\)

y+z-x/x=z+x-y/y=x+y-z/z

=y+z-x+z+x-y+x+y-z/x+y+z

=(y-y)+(z-z)-(x-x)+z+x+y/x+y+z

=0+0+0+x+y+z/x+y+z=1

\(\Leftrightarrow\)x=y=z (*)

thay (*) vào B ta có:

B=(1+x/x)(1+x/x)(1+x/x)

  =2.2.2=8

21 tháng 8 2020

Áp dụng tính chất dãy tỉ số bằng nhau ta có :

\(...=\frac{y+z-x+z+x-y+x+y-z}{x+y+z}=\frac{x+y+z}{x+y+z}=1\)( vì x + y + z \(\ne\)0 )

\(\Rightarrow\hept{\begin{cases}\frac{y+z-x}{x}=1\\\frac{z+x-y}{y}=1\\\frac{x+y-z}{z}=1\end{cases}}\Rightarrow\hept{\begin{cases}y+z-x=x\\z+x-y=y\\x+y-z=z\end{cases}}\Rightarrow\hept{\begin{cases}y+z=2x\\z+x=2y\\x+y=2z\end{cases}}\Rightarrow x=y=z\)

Thế x = y = z vào B ta được :

\(B=\left(1+\frac{y}{y}\right)\left(1+\frac{x}{x}\right)\left(1+\frac{z}{z}\right)=\left(1+1\right)\left(1+1\right)\left(1+1\right)=2\cdot2\cdot2=8\)