Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(= ((2x-3y)+(5x+3y))^2-49 = (8x)^2-49 thế x= 1 vào hoặc phân tích tiếp = (8x-7)(8x+7)\)
Đặt bthuc = A nhé
ĐKXĐ : \(2x\ne3y\)
\(A=\left[\dfrac{2x\left(4x^2+6xy+9y^2\right)}{\left(2x-3y\right)\left(4x^2+6xy+9y^2\right)}-\dfrac{27y^3+36xy^2}{\left(2x-3y\right)\left(4x^2+6xy+9y^2\right)}-\dfrac{24xy\left(2x-3y\right)}{\left(2x-3y\right)\left(4x^2+6xy+9y^2\right)}\right]\left[\dfrac{2x\left(2x-3y\right)}{\left(2x-3y\right)}+\dfrac{9y^2+12xy}{\left(2x-3y\right)}\right]\)\(=\left[\dfrac{8x^3+12x^2y+18xy^2-27y^3-36xy^2-48x^2y+72xy^2}{\left(2x-3y\right)\left(4x^2+6xy+9y^2\right)}\right]\left[\dfrac{4x^2-6xy+9y^2+12xy}{\left(2x-3y\right)}\right]\)
\(=\dfrac{8x^3-36x^2y+36xy^2-27y^3}{\left(2x-3y\right)\left(4x^2+6xy+9y^2\right)}\cdot\dfrac{4x^2+6xy+9y^2}{2x-3y}\)
\(=\dfrac{\left(2x-3y\right)^3}{\left(2x-3y\right)^2}=2x-3y\)
Với x = 1/3 ; y = -2 (tmđk) thay vào A ta được : A = 2.1/3 - 3.(-2) = 20/3
\(\left(2x^2+5x+3\right):\left(x+1\right)-\left(4x-5\right)\)
\(=\dfrac{2x^2+2x+3x+3}{x+1}-4x+5\)
\(=\dfrac{2x\left(x+1\right)+3\left(x+1\right)}{x+1}-4x+5\)
\(=\dfrac{\left(x+1\right)\left(2x+3\right)}{x+1}-4x+5\)
\(=2x+3-4x+5\)
\(=-2x+8\)
thay x=-2 vào biểu thức ta có:
\(=-2\left(-2\right)+8=4+8=12\)
Với điều kiện xy\(\ne\)0;+ -3/2 y;x\(\ne\)-y các phân thức có nghĩa. Ta có
\(\frac{5x\left(2x-3y\right)^2}{3y\left(4x^2-9y^2\right)}:\frac{\left(2x^2+2xy\right)\left(2x-3y\right)}{2x^2y+5xy^2+3y^3}\)\(=\)\(\frac{5x\left(2x-3y\right)^2.y\left(2x^2+5xy+3y^2\right)}{3y\left(4x^2-9y^2\right).2x\left(x+y\right).\left(2x-3y\right)}\)
\(=\)\(\frac{10xy\left(2x-3y\right)^2.\left(2x^2+2xy+3xy+3y^2\right)}{6xy\left(2x-3y\right).\left(2x+3y\right)\left(x+y\right)\left(2x-3y\right)}\)\(=\)\(\frac{10xy\left(2x-3y\right)^2\left(x+y\right).\left(2x+3y\right)}{6xy\left(2x-3y\right)^2.\left(2x+3y\right).\left(x+y\right)}\)
\(=\)\(\frac{5}{3}\)
ĐK \(\hept{\begin{cases}xy\ne0\\2x-3y\ne0,2x+3y\ne0\\x\ne-y\end{cases}}\)
\(=\frac{5x\left(2x-3y\right)^2}{3y\left(2x+3y\right)\left(2x-3y\right)}:\frac{2x\left(x+y\right)\left(2x-3y\right)}{xy\left(2x+3y\right)+y^2\left(2x+3y\right)}\)
\(=\frac{5x\left(2x-3y\right)}{3y\left(2x+3y\right)}:\frac{2x\left(x+y\right)\left(2x-3y\right)}{\left(2x+3y\right)\left(xy+y^2\right)}\)
\(=\frac{5x\left(2x-3y\right)}{3y\left(2x+3y\right)}.\frac{y\left(x+y\right)\left(2x+3y\right)}{2x\left(x+y\right)\left(2x-3y\right)}=\frac{5}{6}\)
Vậy giá trị của biểu thức không phụ thuộc vào biến
đề đúng chưa z
\(P=\left(2x-3y\right)^2+\left(5x+3y\right)^2+2\left(2x-3y\right)\left(5x+3y\right)-49\)
\(P=\left(5x+3y\right)^2+2\left(5x+3y\right)\left(2x-3y\right)+\left(2x-3y\right)^2-49\)
\(P=\left(5x+3y+2x-3y\right)^2-49\)
\(P=\left(7x\right)^2-7^2\)
\(P=\left(7x-7\right)\left(7x+7\right)\)
Thay x=1; y=2016 vào biểu thức A ta được:
\(\left(7.1-7\right)\left(7.1+7\right)=0.14=0\)
Vậy giá trị của biểu thức \(P=\left(2x-3y\right)^2+\left(5x+3y\right)^2+2\left(2x-3y\right)\left(5x+3y\right)-49\) tại x=1; y=2016 là 0