Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Bài 1:
a,\(127^2+146.127+73^2=127^2+2.127.73+73^2\)\(=\left(127+73\right)^2=200^2=40000\)
b,\(9^8.2^8-\left(18^4-1\right)\left(18^4+1\right)\)
\(18^8-\left(18^8-1\right)=1\)
\(c,100^2-99^2+98^2-97^2+...+2^2-1\)
\(=\left(100-99\right)\left(100+99\right)+\left(98-97\right)\left(98+97\right)+...+\left(2-1\right)\left(2+1\right)\)\(=199+195+...+3\)
áp dụng công thức Gauss ta đc đáp án là:10100
d, mk khỏi ghi đề dài dòng:
\(\dfrac{\left(780-220\right)\left(780+220\right)}{\left(125+75\right)^2}=\dfrac{560000}{40000}=14\)Bài 2:
\(A=\left(2-1\right)\left(2+1\right)\)\(\left(2^2+1\right)\left(2^4+1\right)\left(2^8+1\right)\left(2^{16}+1\right)\)
\(A=\left(2^2-1\right)\left(2^2+1\right)\left(2^4+1\right)\left(2^8+1\right)\left(2^{16}+1\right)\)Cứ tiếp tục ta đc \(A=2^{32}-1< B=2^{32}\)
\(\left(3-1\right)C=\left(3-1\right)\left(3+1\right)\left(3^2+1\right)...\left(3^2+16\right)\)giải như câu a đc:\(\left(3-1\right)C=3^{32}-1\)
\(\Rightarrow C=\dfrac{3^{32}-1}{3-1}=\dfrac{3^{32}-1}{2}< D=3^{32}-1\)
1c,
\(=100^2-99^2+98^2-97^2+...+2^2-1^2\\ =\left(100+99\right)\left(100-99\right)+\left(98+97\right)\left(98-97\right)+...+\left(2+1\right)\left(2-1\right)\\ =\left(100+99\right)\cdot1+\left(98+97\right)\cdot1+...+\left(2+1\right)\cdot1\\ =100+99+98+97+...+2+1\\ =\dfrac{100\cdot101}{2}=5050\)
1272 + 146.127 + 732
= 1272 + 2 . 73 .127 + 732
= (127 + 73 ) 2
= 200 2
a/ A = 1002 - 992 + 982 -...+22 - 12
= (1002 - 992) + (982 - 972) +...+ (22 - 12)
= 199 + 195 + 191 + ... + 1
= (\(\frac{199-1}{4}+1\))(\(\frac{199+1}{2}\)) = 5050
b/ Y chang câu a luôn nha
c/ \(C=\frac{780^2-220^2}{125^2+150.125+75^2}=\frac{\left(780-220\right)\left(780+220\right)}{\left(125+75\right)^2}\)
\(=\frac{560.1000}{200^2}=14\)
Bài 11:
1) Sửa lại đề là: \(A=127^2+146.127+73^2\)
\(\Rightarrow A=127^2+2.127.73+73^2\)
\(\Rightarrow A=\left(127+73\right)^2\)
\(\Rightarrow A=200^2\)
\(\Rightarrow A=40000\)
Vậy \(A=40000.\)
2) Sửa lại đề là: \(B=9^8.2^8-\left(18^4-1\right).\left(18^4+1\right)\)
\(\Rightarrow B=\left(9.2\right)^8-\left[\left(18^4\right)^2-1^2\right]\)
\(\Rightarrow B=18^8-\left(18^8-1\right)\)
\(\Rightarrow B=18^8-18^8+1\)
\(\Rightarrow B=0+1\)
\(\Rightarrow B=1\)
Vậy \(B=1.\)
4) \(D=\left(3+1\right).\left(3^2+1\right).\left(3^4+1\right).\left(3^8+1\right).\left(3^{16}+1\right)\)
\(\Rightarrow2D=\left(3-1\right).\left(3+1\right).\left(3^2+1\right).\left(3^4+1\right).\left(3^8+1\right).\left(3^{16}+1\right)\)
\(=\left(3^2-1\right)\left(3^2+1\right)\left(3^4+1\right)\left(3^8+1\right)\left(3^{16}+1\right)\)
\(=\left(3^4-1\right)\left(3^4+1\right)\left(3^8+1\right)\left(3^{16}+1\right)\)
\(=\left(3^8-1\right)\left(3^8+1\right)\left(3^{16}+1\right)\)
\(=\left(3^{16}-1\right)\left(3^{16}+1\right)\)
\(=3^{32}-1\)
\(\Rightarrow D=\frac{3^{32}-1}{2}\)
1.
a/ \(A=2\left(x^3+y^3\right)-3\left(x^2+y^2\right)\)
\(=2\left(x+y\right)\left(x^2-xy+y^2\right)-3\left[\left(x+y\right)^2-2xy\right]\)
\(=2\left(x+y\right)\left[\left(x+y\right)^2-3xy\right]-3\left[\left(x+y\right)^2-2xy\right]\)
\(=2.1.\left[1^2-3xy\right]-3\left[1^2-2xy\right]\)
\(=2-6xy-3+6xy\)
\(=-1\)
Vậy...
2.
a. \(127^2+146.127+73^2\)
\(=127^2+2.73.127+73^2\)
\(=\left(127+73\right)^2=200^2=40000\)
b. \(9^8.2^8-\left(18^4-1\right)\left(18^4+1\right)\)
\(=18^8-18^8+1\)
\(=1\)
A = x 2x2 - 4 và 24và2 tại x = 1.856; y = -0,988
B = ( x 4 - y 4 )(x4-và4) : ( x 2 + y 2 )(x2+và2) tại x = 2003 ; y= 2004
A= chắc sai đề
B=( x 4 - y 4 )(x4-và4) : ( x 2 + y 2 )
=(x^2+y^2).(x^2-y^2)/(x^2+y^2)
=x^2-y^2
=(x-y)(x+y)
thay số =(2003-2004)(2003+2004)=-4007
a. 134^2 - 68.134 + 34^2 = ( 134 - 34 ) ^2 = 100^2 = 10000
b. 9^8.2^8 - ( 18^4 - 1 )(18^4 + 1 ) = 18^8 - 18^8 + 1 = 1
c. 100^2 - 99^2 + 98^2 - 97^2 + ... + 2^2 - 1
=( 100 - 99 )( 100 + 99 ) + ( 98 - 97 )( 98 + 97 ) + ... + ( 2 - 1 )( 2 + 1 )
= 100 + 99 + 98 + 97 + ... + 2 + 1
=( 100 + 1 ).100:2 = 5050
a) 1002-992+....+22-12
=(100+99)(100-99)+(98+97)(98-97)+...+(2+1)(2-1)
=100+99+98+...+2+1
b) bieu thuc tren =
202-192+182-172+...+22-12
tinh tuong tu cau a
a) \(127^2+146.127+73^2=127^2+2.73.127+73^2=\left(127+73\right)^2=40000\)b) \(9^8.2^8-\left(18^4-1\right)\left(18^4+1\right)=18^8-\left(18^8-1\right)=1\)
c) \(100^2-99^2+98^2-97^2+...+2^2-1^2\)
\(=\left(100-99\right)\left(100+99\right)+\left(98-97\right)\left(98+97\right)+...+\left(2-1\right)\left(2+1\right)\)\(=100+99+98+97+...+2+1\)
\(=\dfrac{100\left(100+1\right)}{2}=5050\)
d) \(\left(20^2+18^2+16^2+...+4^2+2^2\right)-\left(19^2+17^2+15^2+...+3^2+1^2\right)\) \(=20^2-19^2+18^2-17^2+16^2-15^2+...+4^2-3^2+2^2-1^2\)
\(=\left(20-19\right)\left(20+19\right)+\left(18-17\right)\left(18+17\right)+...+\left(2-1\right)\left(2+1\right)\)\(=20+19+18+17+...+2+1\)
\(=\dfrac{20\left(20+1\right)}{2}=210\)
e) \(\dfrac{780^2-220^2}{125^2+150.125+75^2}\)
\(=\dfrac{\left(780-220\right)\left(780+220\right)}{\left(125+75\right)^2}=\dfrac{560.1000}{200}=2800\)