Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(\frac{1}{2.4}+\frac{1}{4.6}+\frac{1}{6.8}+...+\frac{1}{2n.\left(2n+2\right)}\))
\(=\frac{1}{2}.\left(\frac{1}{2}-\frac{1}{4}+\frac{1}{4}-\frac{1}{6}+\frac{1}{6}-\frac{1}{8}+...+\frac{1}{2n}-\frac{1}{2n+2}\right)\)
\(=\frac{1}{2}.\left(\frac{1}{2}-\frac{1}{2n+2}\right)\)
\(=\frac{1}{4}-\frac{1}{2.\left(2n+2\right)}\)
\(=\frac{1}{4}-\frac{1}{4n+4}=\frac{1}{4}-\frac{1}{4.\left(n+1\right)}\)
\(=\frac{n+1}{4.\left(n+1\right)}-\frac{1}{4.\left(n+1\right)}=\frac{n+1-1}{4.\left(n+1\right)}=\frac{n}{4.\left(n+1\right)}\)
\(\frac{4}{2.4}+\frac{4}{4.6}+\frac{4}{6.8}+...+\frac{4}{2008.2010}=2.\left(\frac{2}{2.4}+\frac{2}{4.6}+\frac{2}{6.8}+...+\frac{2}{2008.2010}\right)\)
\(=2.\left(\frac{1}{2}-\frac{1}{4}+\frac{1}{4}-\frac{1}{6}+\frac{1}{6}-\frac{1}{10}+...+\frac{1}{2008}-\frac{1}{2010}\right)\)
\(=2.\left(\frac{1}{2}-\frac{1}{2010}\right)\)
\(=2.\frac{502}{1005}\)
\(=\frac{1004}{1005}\)
Có gì ko hiểu thì cứ hỏi mình nha :)
Ta có: \(A=\frac{4}{2.4}+\frac{4}{4.6}+\frac{4}{6.8}+...+\frac{4}{2008.2010}\)
\(=2.2\frac{2}{4}+2.2\frac{2}{4.6}+2.2\frac{2}{6.8}+...+2.2\frac{2}{2008.2010}\)
\(=2.\left(\frac{2}{2.4}+\frac{2}{4.6}+\frac{2}{6.8}+...+\frac{2}{2008.2010}\right)\)
\(=2.\left(\frac{1}{2}-\frac{1}{4}+\frac{1}{4}-\frac{1}{6}+\frac{1}{6}-\frac{1}{8}+...+\frac{1}{2008}-\frac{1}{2010}\right)\)
\(=2.\left(\frac{1}{2}-\frac{1}{2010}\right)\)
\(=2.\frac{1}{2}-2.\frac{1}{2010}\)
\(=1-\frac{1}{1005}\)
\(=\frac{1004}{1005}\)
\(A=\frac{1}{2.4}+\frac{1}{4.6}+\frac{1}{6.8}+...+\frac{1}{48.50}.\)
\(=\frac{1}{2}.\left(\frac{2}{2.4}+\frac{2}{4.6}+\frac{2}{6.8}....+\frac{2}{48.50}\right)\)
\(=\frac{1}{2}.\left(\frac{4-2}{2.4}+\frac{6-4}{4.6}+\frac{8-6}{6.8}+...+\frac{50-48}{48.50}\right)\)
\(=\frac{1}{2}.\left(\frac{1}{2}-\frac{1}{4}+\frac{1}{4}-\frac{1}{6}+\frac{1}{6}-\frac{1}{8}+.....+\frac{1}{48}-\frac{1}{50}\right)\)
\(=\frac{1}{2}.\left(\frac{1}{2}-\frac{1}{50}\right)\)
\(=\frac{1}{2}.\frac{12}{25}=\frac{6}{25}\)
\(B=\frac{3}{1.4}+\frac{3}{4.7}+....+\frac{3}{97.100}\)
\(=\frac{4-1}{1.4}+\frac{7-4}{4.7}+....+\frac{100-97}{97.100}\)
\(=1-\frac{1}{4}+\frac{1}{4}-\frac{1}{7}+.....+\frac{1}{97}-\frac{1}{100}\)
\(=1-\frac{1}{100}=\frac{99}{100}\)
\(C=\frac{8}{7.14}+\frac{8}{14.21}+....+\frac{8}{91.98}\)
\(=\frac{7}{8}.\left(\frac{7}{7.14}+\frac{7}{14.21}+...+\frac{7}{91.98}\right)\)
\(=\frac{7}{8}.\left(\frac{1}{7}-\frac{1}{14}+\frac{1}{14}-\frac{1}{21}+.....+\frac{1}{91}-\frac{1}{98}\right)\)
\(=\frac{7}{8}.\left(\frac{1}{7}-\frac{1}{98}\right)\)
\(=\frac{7}{8}.\frac{13}{98}=\frac{13}{112}\)
*Bài làm:
~I) Tìm x:
➤Ta có: \(\frac{1}{2.4}\) + \(\frac{1}{4.6}\) + ... + \(\frac{1}{\left(2x-2\right)2x}\) = \(\frac{11}{48}\)
⇒ \(2\) . (\(\frac{1}{2.4}\) + \(\frac{1}{4.6}\) + ... + \(\frac{1}{\left(2x-2\right)2x}\)) = \(2\) . \(\frac{11}{48}\)
⇒ \(\frac{2}{2.4}\) + \(\frac{2}{4.6}\) + ... + \(\frac{2}{\left(2x-2\right)2x}\) = \(\frac{22}{48}\)
⇒ (\(\frac{1}{2}\) - \(\frac{1}{4}\)) + (\(\frac{1}{4}\) - \(\frac{1}{6}\)) + ... + (\(\frac{1}{2x-2}\) - \(\frac{1}{2x}\)) = \(\frac{22}{48}\)
⇒ \(\frac{1}{2}\) - \(\frac{1}{4}\) + \(\frac{1}{4}\) - \(\frac{1}{6}\) + \(\frac{1}{6}\) - ... - \(\frac{1}{2x-2}\) + \(\frac{1}{2x-2}\) - \(\frac{1}{2x}\) = \(\frac{22}{48}\)
⇒ \(\frac{1}{2}\) - \(\frac{1}{2x}\) = \(\frac{22}{48}\)
⇒ \(\frac{x}{x}\) . \(\frac{1}{2}\) - \(\frac{1}{2x}\) = \(\frac{22}{48}\)
⇒ \(\frac{x}{2x}\) - \(\frac{1}{2x}\) = \(\frac{22}{48}\)
⇒ \(\frac{x-1}{2x}\) = \(\frac{22}{48}\)
⇒ \(\frac{x-1}{2x}\) = \(\frac{22}{48}\)
⇒ \(x-1\) = \(\frac{22}{48}\) . \(2x\)
⇒ \(x-1\) = \(\frac{44x}{48}\)
⇒ \(x\) = \(\frac{44x}{48}\) + \(1\)
⇒ \(x\) = \(\frac{44x}{48}\) + \(\frac{48}{48}\)
⇒ \(x\) = \(\frac{44x+48}{48}\)
⇒ \(x\) = \(12\) (Chỗ này mình bấm máy tính nên hơi tắt;Bạn thông cảm)
*Vậy \(x\) = \(12\) .
\(A=\frac{1}{1\times3}+\frac{1}{2\times4}+\frac{1}{3\times5}+\frac{1}{4\times6}+\frac{1}{5\times7}+\frac{1}{6\times8}+\frac{1}{7\times9}+\frac{1}{8\times10}\)
\(2A=\frac{2}{1\times3}+\frac{2}{2\times4}+\frac{2}{3\times5}+\frac{2}{4\times6}+\frac{2}{5\times7}+\frac{2}{6\times8}+\frac{2}{7\times9}+\frac{2}{8\times10}\)
\(2A=1-\frac{1}{3}+\frac{1}{2}-\frac{1}{4}+\frac{1}{3}-\frac{1}{5}+\frac{1}{4}-\frac{1}{6}+\frac{1}{5}-\frac{1}{7}+\frac{1}{6}-\frac{1}{8}+\frac{1}{7}-\frac{1}{9}+\frac{1}{8}-\frac{1}{10}\)
\(2A=1+\frac{1}{2}-\frac{1}{9}-\frac{1}{10}\)
\(2A=\frac{58}{45}\)
\(A=\frac{58}{45}\div2\)
\(A=\frac{29}{45}\)
\(2A=\frac{2}{1.3}+\frac{2}{2.4}+...+\frac{2}{8.10}=1-\frac{1}{3}+\frac{1}{2}-\frac{1}{4}+\frac{1}{3}-....+\frac{1}{8}-\frac{1}{10}\)
\(=1+\frac{1}{2}-\frac{1}{9}-\frac{1}{10}=\frac{58}{45}\)
\(A=\frac{29}{45}\)
\(B=\frac{\left(2.3.4...150\right)\left(2.3.4...150\right)}{\left(1.2.3...149\right)\left(3.4.5...151\right)}\)
\(B=\frac{\left(1.2.3...149\right).150.2.\left(3.4.5...150\right)}{\left(1.2.3...149\right).\left(3.4.5...150\right).151}\)
\(B=\frac{300}{151}\)
\(\frac{2^2}{2.4}+\frac{2^2}{4.6}+...+\frac{2^2}{26.28}\)
= \(2.\left(\frac{2}{2.4}+\frac{2}{4.6}+...+\frac{2}{26.28}\right)\)
= \(2.\left(\frac{1}{2}-\frac{1}{4}+\frac{1}{4}-\frac{1}{6}+...+\frac{1}{26}-\frac{1}{28}\right)\)
= \(2.\left(\frac{1}{2}-\frac{1}{28}\right)\)
= \(2.\frac{13}{28}\)
= \(\frac{13}{14}\)
\(=2\left(\frac{2}{2.4}+\frac{2}{4.6}+...+\frac{2}{26.28}\right)=2\left(\frac{1}{2}-\frac{1}{4}+\frac{1}{4}-\frac{1}{6}+...+\frac{1}{26}-\frac{1}{28}\right)\)
\(=2\left(\frac{1}{2}-\frac{1}{28}\right)\)