Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Đơn giản :
Ta có :\(\frac{1978.1979+1980.21+1958}{1980.1979-1978.1979}\)
\(=\frac{1978.1979+1979.21+21+1958}{1979\left(1980-1978\right)}\)
\(=\frac{1978.1979+1979.21+1979}{1979.2}\)
\(=\frac{1979.\left(1978+21+1\right)}{1979.2}\)
\(=\frac{2000}{2}=1000\)
\(=\frac{1978.1979+1979.21+21+1958}{1979\left(1980-1978\right)}=\frac{1978.1979+1979.22-1979+1979}{2.1979}\)
\(=\frac{1979.\left(1978+22\right)}{2.1979}=\frac{2000.1979}{2.1979}=1000\)
\(\frac{1978.1979+1980.21+1958}{1980.1979-1978.1979}=\frac{1978.1979+1979.21+21+1958}{1979.\left(1980-1978\right)}\)
\(=\frac{1979.\left(1979+21\right)+21+1958}{1979.2}=\frac{1979.\left(1978+21+1\right)}{1979.2}\)
\(=\frac{1979.2000}{1979.2}=1000.\)
**** nha!
\(\frac{1978.1979+1980}{1980.1979-1978.1979}=\frac{1978.1979+1980}{1979.\left(1980-1978\right)}\)=(Rút gọn,gạch những số giống nhau)=\(\frac{0}{1979}\)
\(b,\frac{1978\cdot1979+1980\cdot21+1958}{1980\cdot1979-1978\cdot1979}\\ =\frac{1978\cdot1979+\left(1979+1\right)\cdot21+1958}{1979\left(1980-1978\right)}\\ =\frac{1978\cdot1979+1979\cdot21+\left(21+1958\right)}{1979\cdot2}\\ =\frac{1978\cdot1979+1979\cdot21+1979}{1979\cdot2}\\ =\frac{1979\left(1978+21+1\right)}{1979\cdot2}\\ =\frac{2000}{2}\\ =1000\)
Ta có : \(\frac{1978.1979+1980.21+1958}{1980.1979-1978.1979}\)
\(=\frac{1978.1979+\left(1979+1\right).21+1958}{\left(1980-1978\right).1979}\)
\(=\frac{1978.1979+1979.21+1.21+1958}{2.1979}\)
\(=\frac{1979.\left(1978+21\right)+\left(21+1958\right)}{2.1979}\)
\(=\frac{1979.1999+1979}{2.1979}\)
\(=\frac{1979.1999+1979.1}{2.1979}\)
\(=\frac{\left(1999+1\right).1979}{2.1979}\)
\(=\frac{2000.1979}{2.1979}\)
\(=\frac{2.1000.1979}{2.1979}\)
\(=1000\)
a ) Tính nhanh :
\(\frac{1978.1979+1980.21+1958}{1980.1979-1978.1979}\)
Rút gọn các số : 1978 , 1079 , 1980 cho nhau ta còn phân số :
\(\frac{21+1958}{1979}\)= \(\frac{1979}{1979}\) = 1
Rút gọn các số 1978, 1979, 1989 cho nhau ta còn phân số:
21+1958/1979=1979/1979=1
\(\frac{1978.1979+1980.21+1958}{1980.1979-1978.1979}\)
\(=\frac{1978.1979+1979.21+21+1958}{1979.\left(1980-1978\right)}\)
\(=\frac{1979.\left(1978+21\right)+21+1958}{1979.2}\)
\(=\frac{1979.\left(1978+21+1\right)}{1979.2}\)
\(=\frac{1979.2000}{1979.2}\)
\(=\frac{2000}{2}\)
\(=1000\)