Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(18\times32+43\times18+18\times26-18\)
\(=18\times\left(32+43+26-1\right)\)
\(=18\times100\)
\(=1800\)
18 * 32 + 43 * 18 + 18 * 26 - 18
= 18 * ( 32 + 43 + 26 - 1 )
= 18 * 100
= 1800
Có số số hạng là :
( 100 - 1 ) : 3 + 1 = 34 ( số )
Tổng là :
( 100 + 1 ) x 34 : 2 + 83 = 1800
Đặt A=18 * 32 + 43 * 18 + 18 * 26 - 18
=18*(32+43+26-1)
=18*100
=1800
Đặt B=1 + 4 + 7 + 10 + .......+ 94 + 97 + 100
Tổng B có số số hạng là:
(100-1):3+1=34 (số)
tổng B là:
(100+1)*34:2=1717
Thay vào ta có \(\frac{A}{B}=\frac{1800}{1717}\)
=[18.(32+43+26-1)]:(1+4+7+10+...+94+97+100)
=[18.100]:[(100-1):3+1]
=1800:[(1+100).34:2]
=1800:1717
=1800/1717
18
a) \(\frac{3^{10}.\left(11+5\right)}{3^9.16}\)=\(\frac{3^{10}.16}{3^{10}.16}\)=1
a) \(\frac{3^{10}.\left(11+5\right)}{3^9.16}=\frac{3^{10}.16}{3^9.16}=\frac{3^{10}}{3^9}=3\)
12+42+72+102+...+972+1002
=1+(1+3)4+(4+3)7+(7+3)10+...+(94+3)97+(97+3)100
=1+3.4+1.4+4.7+3.7+7.10+3.10+...+94.97+3.97+97.100+3.100
=1+(3.4+3.7+3.10+...+3.97+3.100+1.4)+(4.7+7.10+...+97.100)
=1+1716+4+(4.7+7.10+...+97.100)
=1721+(4.7+7.10+...+97.100)
đặt A=4.7+7.10+...+97.100
=>9A=4.7.9+7.10.9+...+97.100.9
=4.7(10-1)+7.10(13-4)+...+97.100.(103-94)
=4.7.10-1.4.7+7.10.13-4.7.10+...+97.100.103-94.97.100
=97.100.103-1.4.7=999100-28
=999072
=>A=999072:9=111008
=>12+42+72+102+...+972+1002=1721+111008=112729
\(A=\frac{2}{1-4}+\frac{2}{4-7}+...+\frac{2}{97-100}\)
\(\Rightarrow A=\frac{2}{-3}+\frac{2}{-3}+...+\frac{2}{-3}\)
\(\Rightarrow A=\frac{2}{-3}.97=\frac{-194}{3}\)
Nếu đề bài đúng:
Bài làm:
Xét dãy số: 1,4,7,...97
Dãy số trên có số số hạng là: \(\frac{97-1}{3}+1=33\)
\(A=\frac{2}{-3}+\frac{2}{-3}+\frac{2}{-3}+...+\frac{2}{-3}=33.\frac{2}{-3}=-22\) có 33 số -2/3
Nếu đề bài sai
\(A=\frac{2}{1.4}+\frac{2}{4.7}+...+\frac{2}{97.100}\)
\(A.3:2=\frac{3}{1.4}+\frac{3}{4.7}+...+\frac{3}{97.100}\)
\(=\frac{4-1}{1.4}+\frac{7-4}{4.7}+...+\frac{100-97}{100.97}\)
\(=1-\frac{1}{4}+\frac{1}{4}-\frac{1}{7}+...+\frac{1}{97}-\frac{1}{100}\)
\(1-\frac{1}{100}=\frac{99}{100}\)
=> \(A=\frac{99}{100}.2:3=\frac{33}{50}\)
13/50+9/100+41/100+12/50
=(13/50+12/50)+(9/100+41/100)
=1/2+1/2
=1
11) Ta có:
\(\frac{120-0,5.40.5.0,2.20.0,25-20}{1+5+9+...+33+37}\)
\(=\frac{120-\left(0,5.40\right).\left(5.0,2\right).\left(20.0,25\right)-20}{1+5+9+...+33+37}\)
\(=\frac{120-20.1.5-20}{1+5+9+...+33+37}\)
\(=\frac{120-100-20}{1+5+9+...+33+37}\)
\(=\frac{0}{1+5+9+...+33+37}=0\)
Bài 1 :
Ta có :
\(A=\frac{10^{17}+1}{10^{18}+1}=\frac{\left(10^{17}+1\right).10}{\left(10^{18}+1\right).10}=\frac{10^{18}+10}{10^{19}+10}\)
Mà : \(\frac{10^{18}+10}{10^{19}+10}>\frac{10^{18}+1}{10^{19}+1}\)
Mà \(A=\frac{10^{18}+10}{10^{19}+10}\)nên \(A>B\)
Vậy \(A>B\)
Bài 2 :
Ta có :
\(S=\frac{2013}{2014}+\frac{2014}{2015}+\frac{2015}{2016}+\frac{2016}{2013}\)
\(\Rightarrow S=\frac{2014-1}{2014}+\frac{2015-1}{2015}+\frac{2016-1}{2016}+\frac{2013+3}{2013}\)
\(\Rightarrow S=1-\frac{1}{2014}+1-\frac{1}{2015}+1-\frac{1}{2016}+1+\frac{3}{2013}\)
\(\Rightarrow S=4+\frac{3}{2013}-\left(\frac{1}{2014}+\frac{1}{2015}+\frac{1}{2016}\right)\)
Vì \(\frac{1}{2013}>\frac{1}{2014}>\frac{1}{2015}>\frac{1}{2016}\)nên \(\frac{3}{2013}-\left(\frac{1}{2014}+\frac{1}{2015}+\frac{1}{2016}\right)>0\)
Nên : \(M>4\)
Vậy \(M>4\)
Bài 3 :
Ta có :
\(A=\frac{1}{2^2}+\frac{1}{3^2}+\frac{1}{4^2}+.......+\frac{1}{100^2}\)
Suy ra : \(A< \frac{1}{1.3}+\frac{1}{2.4}+\frac{1}{3.5}+....+\frac{1}{99.101}\)
\(\Rightarrow A< \frac{1}{2}.\left(\frac{2}{1.3}+\frac{2}{2.4}+......+\frac{2}{99.101}\right)\)
\(\Rightarrow A< \frac{1}{2}.\left(1-\frac{1}{3}+\frac{1}{2}-\frac{1}{4}+\frac{1}{3}-......-\frac{1}{101}\right)\)
\(\Rightarrow A< \frac{1}{2}.\left[\left(1+\frac{1}{2}+\frac{1}{3}+.....+\frac{1}{99}\right)-\left(\frac{1}{3}+\frac{1}{4}+......+\frac{1}{101}\right)\right]\)
\(\Rightarrow A< \frac{1}{2}.\left(1+\frac{1}{2}-\frac{1}{100}-\frac{1}{101}\right)\)
\(\Rightarrow A< \frac{1}{2}.\left(1+\frac{1}{2}\right)\)
\(\Rightarrow A< \frac{3}{4}\)
Vậy \(A< \frac{3}{4}\)
Bài 4 :
\(a)A=\frac{1}{1.3}+\frac{1}{3.5}+\frac{1}{5.7}+....+\frac{1}{2015.2017}\)
\(\Rightarrow A=\frac{1}{2}.\left(\frac{2}{1.3}+\frac{2}{3.5}+\frac{2}{5.7}+.....+\frac{1}{2015.2017}\right)\)
\(\Rightarrow A=\frac{1}{2}.\left(1-\frac{1}{3}+\frac{1}{3}-\frac{1}{5}+\frac{1}{5}-\frac{1}{7}+.....+\frac{1}{2015}-\frac{1}{2017}\right)\)
\(\Rightarrow A=\frac{1}{2}.\left(1-\frac{1}{2017}\right)\)
\(\Rightarrow A=\frac{1}{2}.\frac{2016}{2017}\)
\(\Rightarrow A=\frac{1008}{2017}\)
Vậy \(A=\frac{1008}{2017}\)
\(b)\frac{1}{1.3}+\frac{1}{3.5}+\frac{1}{5.7}+......+\frac{1}{x\left(x+2\right)}=\frac{1008}{2017}\)
\(\frac{2}{1.3}+\frac{2}{3.5}+\frac{2}{5.7}+......+\frac{2}{x.\left(x+2\right)}=\frac{2016}{2017}\)
\(1-\frac{1}{3}+\frac{1}{3}-\frac{1}{5}+\frac{1}{5}-\frac{1}{7}+.....+\frac{1}{x}-\frac{1}{x+2}=\frac{2016}{2017}\)
\(1-\frac{1}{x+2}=\frac{2016}{2017}\)
\(\Rightarrow\frac{1}{x+2}=1-\frac{2016}{2017}\)
\(\Rightarrow\frac{1}{x+2}=\frac{1}{2017}\)
\(\Rightarrow x+2=2017\)
\(\Rightarrow x=2017-2=2015\)
Vậy \(x=2015\)