Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a,Ta có \(\frac{\frac{1}{2}-\frac{1}{3}-\frac{1}{4}}{1-\frac{2}{3}-\frac{1}{2}}-\frac{\frac{3}{5}-\frac{3}{7}-\frac{3}{11}}{\frac{6}{5}-\frac{6}{7}-\frac{6}{11}}\)
\(=\frac{\frac{1}{2}-\frac{1}{3}-\frac{1}{4}}{2.\left(\frac{1}{2}-\frac{1}{3}-\frac{1}{4}\right)}-\frac{3.\left(\frac{1}{5}-\frac{1}{7}-\frac{1}{11}\right)}{6.\left(\frac{1}{5}-\frac{1}{7}-\frac{1}{11}\right)}\)
=\(\frac{1}{2}-\frac{3}{6}=\frac{1}{2}-\frac{1}{2}=0\)
Vậy giá trị biểu thức bằng 0
b, Mình không hiểu cho lắm ạ , nếu ko phiền xin xem lại đầu bài ạ
c) \(A=\frac{6}{4}+\frac{6}{28}+\frac{6}{70}+\frac{6}{130}+\frac{6}{208}\)
\(=\frac{6}{1.4}+\frac{6}{4.7}+\frac{6}{7.10}+\frac{6}{10.13}+\frac{6}{13.16}\)
\(=2\left(1-\frac{1}{4}+\frac{1}{4}-\frac{1}{7}+\frac{1}{7}-\frac{1}{10}+\frac{1}{10}-\frac{1}{13}+\frac{1}{13}-\frac{1}{16}\right)\)
\(=2\left(1-\frac{1}{16}\right)\)
\(=2.\frac{15}{16}\)
\(=\frac{15}{8}\)
Vậy A=\(\frac{15}{8}\)
a) \(\frac{3^2}{1.4}+\frac{3^2}{4.7}+\frac{3^2}{7.10}+...+\frac{3^2}{97.100}\)
\(=3\left(\frac{3}{1.4}+\frac{3}{4.7}+\frac{3}{7.10}+...+\frac{3}{97.100}\right)\)
\(=3\left(1-\frac{1}{4}+\frac{1}{4}-\frac{1}{7}+\frac{1}{7}-\frac{1}{10}+...+\frac{1}{97}-\frac{1}{100}\right)\)
\(=3\left(1-\frac{1}{100}\right)\)
\(=3.\frac{99}{100}=\frac{297}{100}\)
Bài 1 mik học xong quên hết òi (mấy bài kia là hok biết luôn :V)
Đặt \(B=\frac{1}{3}+\frac{1}{6}+\frac{1}{10}+.....+\frac{1}{210}\)
\(\frac{1}{2}B=\frac{1}{6}+\frac{1}{12}+\frac{1}{20}+...+\frac{1}{420}\)
\(\frac{1}{2}B=\frac{1}{2.3}+\frac{1}{3.4}+\frac{1}{4.5}+...+\frac{1}{20.21}\)
\(\frac{1}{2}B=\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+...+\frac{1}{20}-\frac{1}{21}\)
\(\frac{1}{2}B=\frac{1}{2}-\frac{1}{21}\)
\(\Rightarrow B=\frac{\frac{1}{2}-\frac{1}{21}}{\frac{1}{2}}=\frac{19}{21}\)
\(A=\frac{1}{1+2}+\frac{1}{1+2+3}+....+\frac{1}{1+2+3+...+50}\)
\(A=\frac{1}{3}+\frac{1}{6}+\frac{1}{10}+...+\frac{1}{\frac{\left(1+50\right).50}{2}}\)
\(A=\frac{1}{3}+\frac{1}{6}+\frac{1}{10}+....+\frac{1}{1275}\)
\(A=\frac{2}{6}+\frac{2}{12}+\frac{2}{20}+....+\frac{2}{2550}\)
\(A=\frac{2}{2.3}+\frac{2}{3.4}+\frac{2}{4.5}+..+\frac{2}{50.51}\)
\(A=2\left(\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+...+\frac{1}{50}-\frac{1}{51}\right)\)
\(A=2\left(\frac{1}{2}-\frac{1}{51}\right)=2\cdot\frac{49}{102}=\frac{49}{51}\)