Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
1/2.3+1/3.4+1/4.5+1/5.6+1/6.7+1/7.8+1/8.9+1/9.10
=1/2-1/3+1/3-1/4+1/4-1/5+1/5-1/6+1/6+1/7-1/7+1/8-1/8+1/9+1/9-1/10
=1/2-1/10
=5/10-1/10
=4/10=2/5
\(\frac{1}{2x3}+\frac{1}{3x4}+\frac{1}{4x5}+\frac{1}{5x6}+\frac{1}{6x7}+\frac{1}{8x9}+\frac{1}{9x10}\)
\(\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+\frac{1}{4}-\frac{1}{5}+\frac{1}{5}-\frac{1}{6}+\frac{1}{6}-\frac{1}{7}+\frac{1}{7}-\frac{1}{8}+\frac{1}{8}-\frac{1}{9}+\frac{1}{9}-\frac{1}{10}\)
\(\frac{1}{2}-\frac{1}{10}\)
\(\frac{2}{5}\)
B=2+1/1.2+2+1/2.3+........+2+1/9.10
B=2.9+1/1.2+1/2.3+........+1/9.10
B=18+9/10
\(\frac{2}{5}x+\frac{3}{10}=1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+.........+\frac{1}{9}-\frac{1}{10}\)
\(\frac{2}{5}x+\frac{3}{10}=1-\frac{1}{10}=\frac{9}{10}\)
\(\frac{2}{5}x=\frac{9}{10}-\frac{3}{10}=\frac{3}{5}\)
\(x=\frac{\frac{3}{5}}{\frac{2}{5}}=\frac{3}{2}\)
Ta có: \(\frac{1}{1x2}\)+ \(\frac{1}{2x3}\)+ \(\frac{1}{3x4}\)+ \(\frac{1}{4x5}\)+ .....+ \(\frac{1}{9x10}\)
= \(1-\left(\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+\frac{1}{4}-.....-\frac{1}{9}+\frac{1}{9}-\frac{1}{10}\right)\)
= 1 - \(\frac{1}{10}\)
= \(\frac{9}{10}\)
\(1\frac{13}{15}\cdot3\cdot(0,5)^2\cdot3+\left[\frac{8}{15}-1\frac{19}{60}:1\frac{23}{24}\right]\)
\(=\frac{28}{15}\cdot3\cdot0,5\cdot0,5\cdot3+\left[\frac{8}{15}-\frac{79}{60}:\frac{47}{24}\right]\)
\(=\frac{28}{5}\cdot0,25\cdot3+\left[\frac{32}{60}-\frac{79}{60}\cdot\frac{24}{47}\right]\)
\(=\frac{28}{5}\cdot\frac{25}{100}\cdot3+\left[\frac{32}{60}-\frac{158}{235}\right]\)
\(=\frac{28}{5}\cdot\frac{1}{4}\cdot3+\frac{-98}{705}=\frac{7}{5}\cdot1\cdot3+\frac{-98}{705}\)
Đến đây là tính dễ rồi :v
\((-3,2)\cdot\frac{-15}{64}+\left[0,8-2\frac{4}{15}\right]:1\frac{23}{24}\)
\(=\frac{-32}{10}\cdot\frac{-15}{64}+\left[\frac{8}{10}-\frac{34}{15}\right]:\frac{47}{24}\)
\(=\frac{-32\cdot(-15)}{10\cdot64}+\left[\frac{4}{5}-\frac{34}{15}\right]:\frac{47}{24}\)
\(=\frac{-1\cdot(-3)}{2\cdot2}+\frac{4\cdot3-34}{15}:\frac{47}{24}\)
\(=\frac{3}{4}+\frac{-22}{15}:\frac{47}{24}\)
\(=\frac{3}{4}+\frac{-517}{180}=\frac{-191}{90}\)
Bài 2 : \(\frac{2\cdot(-13)\cdot9\cdot10}{(-3)\cdot4\cdot(-5)\cdot26}=\frac{1\cdot(-1)\cdot3\cdot2}{(-1)\cdot2\cdot(-1)\cdot2}=\frac{1\cdot3}{-1\cdot2}=\frac{3}{-2}=\frac{-3}{2}\)
\(\frac{15\cdot8+15\cdot4}{12\cdot3}=\frac{15\cdot(8+4)}{12\cdot3}=\frac{15\cdot12}{12\cdot3}=\frac{15}{3}=5\)
\(\frac{1}{1.2.3}+\frac{1}{2.3.4}+\frac{1}{3.4.5}+...+\frac{1}{2014.2015.2016}\)
\(=\frac{1}{2}\left(\frac{2}{1.2.3}+\frac{2}{2.3.4}+\frac{2}{3.4.5}+...+\frac{2}{2014.2015.2016}\right)\)
\(=\frac{1}{2}\left(\frac{1}{1.2}-\frac{1}{2.3}+\frac{1}{2.3}-\frac{1}{3.4}+\frac{1}{3.4}-\frac{1}{4.5}+...+\frac{1}{2014.2015}-\frac{1}{2015.2016}\right)\)
\(=\frac{1}{2}\left(\frac{1}{1.2}-\frac{1}{2015.2016}\right)\)
\(E=\frac{1}{10}+\frac{1}{15}+...+\frac{1}{120}\)
\(E=\frac{2}{20}+\frac{2}{30}+...+\frac{2}{240}\)
\(E=2\left(\frac{1}{20}+\frac{1}{30}+...+\frac{1}{240}\right)\)
\(E=2\left(\frac{1}{4x5}+\frac{1}{5x6}+...+\frac{1}{15x16}\right)\)
\(E=2\left(\frac{1}{4}-\frac{1}{5}+\frac{1}{5}-\frac{1}{6}+...+\frac{1}{15}-\frac{1}{16}\right)\)
\(E=2\left(\frac{1}{4}-\frac{1}{16}\right)\)
\(E=\frac{3}{8}\)
1/2E=1/20+1/30+1/42+...+1/240. =>1/2E=1/4*5+1/5*6+1/6*7+...+1/15*16. =>1/2E=1/4-1/5+1/5-1/6+1/6-1/7+...+1/15-1/16. =>1/2E=1/4-1/16=3/16. =>E=3/16:1/2=3/8. Câu b có vấn đề.
\(3C=\frac{3}{1.2.3.4}+\frac{3}{2.3.4.5}+...+\frac{3}{27.28.29.30}\)
\(3C=\frac{4-1}{1.2.3.4}+\frac{5-2}{2.3.4.5}+...+\frac{30-27}{27.28.29.30}\)
\(3C=\frac{1}{1.2.3}-\frac{1}{2.3.4}+\frac{1}{2.3.4}-\frac{1}{3.4.5}+...+\frac{1}{27.28.29}+\frac{1}{28.29.30}\)
\(3C=\frac{1}{1.2.3}-\frac{1}{28.29.30}\Rightarrow C=\left(\frac{1}{1.2.3}-\frac{1}{28.29.30}\right):3\)
= 1/2 .( 1/1.2 - 1/2.3 + 1/2.3 - 1/3.4 + 1/3.4 - 1/4.5 + .......+ 1/2014.2015 - 1/2015.2016)
= 1/2 ( 1/2 - 1/2015.2016)
Tính tiếp p nhé.
A và B dễ
Bài 2:
sai đề bài vì ngay từ cái phép tính đầu đã ko theo quy luật rồi
\(A=\frac{-3}{5}-\frac{2}{5}+2\)
\(A=-1+2=1\)
\(B=\left(6-\frac{14}{5}\right).\frac{25}{8}-\frac{8}{5}=\frac{1}{4}\)
nÀ NÍ sao lại = đây là dấu trừ hay cộng 1/4
Đặt A=............(đề bài)
=>2A=\(2\left(\frac{1}{1.3}+\frac{1}{2.4}+...+\frac{1}{8.10}\right)\)
=>2A=\(\frac{2}{1.3}+\frac{2}{2.4}+...+\frac{2}{8.10}\)
=>2A=\(\left(\frac{2}{1.3}+...+\frac{2}{7.9}\right)+\left(\frac{2}{2.4}+...+\frac{2}{8.10}\right)\)
=>2A=\(\left(\frac{1}{1}-\frac{1}{3}+...+\frac{1}{7}-\frac{1}{9}\right)+\left(\frac{1}{2}-\frac{1}{4}+...+\frac{1}{8}-\frac{1}{10}\right)\)
=>2A=\(\left(1-\frac{1}{9}\right)+\left(\frac{1}{2}-\frac{1}{10}\right)\)
=>2A=\(\frac{8}{9}+\frac{2}{5}\)
=>2A=\(\frac{58}{45}\)
=>A=\(\frac{58}{45}:2\)
=>A=\(\frac{29}{45}\)