\(\dfrac{-9}{10}.\dfrac{5}{14}+\dfrac{1}{10}.\dfrac{-...">
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

1 tháng 5 2017

B1: Tính nhanh:

\(E=\dfrac{-9}{10}\cdot\dfrac{5}{14}+\dfrac{1}{10}\cdot\dfrac{-9}{2}+\dfrac{1}{7}\cdot\dfrac{-9}{10}\)

\(E=\dfrac{-9}{10}\cdot\dfrac{5}{14}+\dfrac{-9}{10}\cdot\dfrac{1}{2}+\dfrac{1}{7}\cdot\dfrac{-9}{10}\)

\(E=\dfrac{-9}{10}\cdot\left(\dfrac{5}{14}+\dfrac{1}{2}+\dfrac{1}{7}\right)\)

\(E=\dfrac{-9}{10}\cdot\left(\dfrac{5}{14}+\dfrac{7}{14}+\dfrac{2}{14}\right)\)

\(E=\dfrac{-9}{10}\cdot1=\dfrac{-9}{10}\)

B2: Chứng tỏ rằng:

\(\dfrac{1}{1\cdot2}+\dfrac{1}{2\cdot3}+\dfrac{1}{3\cdot4}+...+\dfrac{1}{99\cdot100}< 1\)

Ta có: \(\dfrac{1}{1\cdot2}+\dfrac{1}{2\cdot3}+\dfrac{1}{3\cdot4}+...+\dfrac{1}{99\cdot100}\)

\(\Leftrightarrow1-\dfrac{1}{2}+\dfrac{1}{2}-\dfrac{1}{3}+...+\dfrac{1}{99}-\dfrac{1}{100}\)

\(\Leftrightarrow1-\dfrac{1}{100}=\dfrac{99}{100}\)

\(\dfrac{99}{100}< 1\)

\(\Rightarrow\dfrac{1}{1\cdot2}+\dfrac{1}{2\cdot3}+\dfrac{1}{3\cdot4}+...+\dfrac{1}{99\cdot100}< 1\)

Tick mình nha!hihi

10 tháng 6 2017

1)Tính

a)\(\dfrac{1}{1.2}+\dfrac{1}{2.3}+..........+\dfrac{1}{9.10}\)

=\(1-\dfrac{1}{2}+\dfrac{1}{2}-\dfrac{1}{3}+.....+\dfrac{1}{9}-\dfrac{1}{10}\)

\(=1-\dfrac{1}{10}\)

\(=\dfrac{9}{10}\)

b)\(\dfrac{1}{1.2}+\dfrac{1}{2.3}+\dfrac{1}{3.4}+.........+\dfrac{1}{99.100}\)
\(=1-\dfrac{1}{2}+\dfrac{1}{2}-\dfrac{1}{3}+\dfrac{1}{3}-\dfrac{1}{4}+..............+\dfrac{1}{99}-\dfrac{1}{100}\)

\(=1-\dfrac{1}{100}\)

\(=\dfrac{99}{100}\)

2) tìm x

\(a\)) \(\dfrac{2}{5}+\dfrac{4}{5}x-\dfrac{7}{5}\)\(=\dfrac{9}{5}\)

\(\dfrac{4}{5}x+\dfrac{7}{5}=\dfrac{9}{5}-\dfrac{2}{5}\)

\(\dfrac{4}{5}x+\dfrac{7}{5}=\dfrac{7}{5}\)

\(\dfrac{4}{5}x=\dfrac{7}{5}-\dfrac{7}{5}\)

\(\dfrac{4}{5}x=0\)

\(x=0:\dfrac{4}{5}\)

\(x=0\)

b)\(\dfrac{2}{5}x-\dfrac{6}{4}=\dfrac{8}{5}\)

\(\dfrac{2}{5}x=\dfrac{8}{5}+\dfrac{6}{4}\)

\(\dfrac{2}{5}x=\dfrac{31}{10}\)

\(x=\dfrac{31}{10}:\dfrac{2}{5}\)

\(x=\dfrac{31}{4}\)

10 tháng 6 2017

1. Tính:

a. \(\dfrac{1}{1.2}+\dfrac{1}{2.3}+...+\dfrac{1}{9.10}\)

= \(\dfrac{1}{1}-\dfrac{1}{2}+\dfrac{1}{2}-\dfrac{1}{3}+...+\dfrac{1}{9}-\dfrac{1}{10}\)

= \(\dfrac{1}{1}-\dfrac{1}{10}\)

= \(\dfrac{10}{10}-\dfrac{1}{10}\)

= \(\dfrac{9}{10}\)

b. \(\dfrac{1}{1.2}+\dfrac{1}{2.3}+\dfrac{1}{3.4}+...+\dfrac{1}{99.100}\)

= \(\dfrac{1}{1}-\dfrac{1}{2}+\dfrac{1}{2}-\dfrac{1}{3}+\dfrac{1}{3}-\dfrac{1}{4}+...+\dfrac{1}{99}-\dfrac{1}{100}\)

= \(\dfrac{1}{1}-\dfrac{1}{100}\)

= \(\dfrac{100}{100}-\dfrac{1}{100}\)

= \(\dfrac{99}{100}\)

2. Tìm x, biết:

a. \(\dfrac{2}{5}+\dfrac{4}{5}x-\dfrac{7}{5}=\dfrac{9}{5}\)

\(\dfrac{4}{5}x-\dfrac{7}{5}=\dfrac{9}{5}-\dfrac{2}{5}\)

\(\dfrac{4}{5}x-\dfrac{7}{5}=\dfrac{7}{5}\)

\(\dfrac{4}{5}x=\dfrac{7}{5}+\dfrac{7}{5}\)

\(\dfrac{4}{5}x=\dfrac{14}{5}\)

\(x=\dfrac{14}{5}:\dfrac{4}{5}\)

\(x=\dfrac{14}{5}.\dfrac{5}{4}\)

\(x=14.\dfrac{1}{4}\)

\(x=\dfrac{14}{4}\)

Vậy \(x=\dfrac{14}{4}\)

b. \(\dfrac{2}{5}x-\dfrac{6}{4}=\dfrac{8}{5}\)

\(\dfrac{2}{5}x=\dfrac{8}{5}+\dfrac{6}{4}\)

\(\dfrac{2}{5}x=\dfrac{32}{20}+\dfrac{30}{20}\)

\(\dfrac{2}{5}x=\dfrac{62}{20}\)

\(\dfrac{2}{5}x=\dfrac{31}{10}\)

\(x=\dfrac{31}{10}:\dfrac{2}{5}\)

\(x=\dfrac{31}{10}.\dfrac{5}{2}\)

\(x=\dfrac{31}{2}.\dfrac{2}{2}\)

\(x=\dfrac{31}{2}.1\)

\(x=\dfrac{31}{2}\)

Vậy \(x=\dfrac{31}{2}\)

bài này mk tự làm ko sao chép trên mạnghihi

nếu thấy đúng thì tick đúng cho mk nhavui

20 tháng 6 2017

a) $A=\dfrac{1}{1.2}+\dfrac{1}{3.4}+...+\dfrac{1}{99.100}$

$=>A=1-\dfrac{1}{2}+\dfrac{1}{3}-\dfrac{1}{4}+...+\dfrac{1}{99}-\dfrac{1}{100}$

$=>A=(1+\dfrac{1}{3}+...+\dfrac{1}{99})-(\dfrac{1}{2}+\dfrac{1}{4}+...+\dfrac{1}{100})$

$=>A=(1+\dfrac{1}{2}+\dfrac{1}{3}+\dfrac{1}{4}+...+\dfrac{1}{99}+\dfrac{1}{100})-(\dfrac{1}{2}+\dfrac{1}{4}+...+\dfrac{1}{100}.2)$

$=>A=(1+\dfrac{1}{2}+\dfrac{1}{3}+...+\dfrac{1}{100})-(1+\dfrac{1}{2}+...+\dfrac{1}{50})$

$=>A=\dfrac{1}{51}+\dfrac{1}{52}+...+\dfrac{1}{100}$

b) Ta có : $A=1-\dfrac{1}{2}+\dfrac{1}{3}-\dfrac{1}{4}+...+\dfrac{1}{99}-\dfrac{1}{100}$

$=>A=(1-\dfrac{1}{2}+\dfrac{1}{3})-(\dfrac{1}{4}-\dfrac{1}{5})-...-(\dfrac{1}{98}-\dfrac{1}{99})-\dfrac{1}{100}$

$=>A<1-\dfrac{1}{2}+\dfrac{1}{3}=\dfrac{5}{6}$

7 tháng 5 2017

lầy dạ??

5 tháng 4 2017

a, \(\dfrac{1}{n}-\dfrac{1}{n+a}=\dfrac{n+a}{n\left(n+a\right)}-\dfrac{n}{n\left(n+a\right)}=\dfrac{n+a-n}{n\left(n+a\right)}=\dfrac{a}{n\left(n+a\right)}\)

Vậy \(\dfrac{1}{n}-\dfrac{1}{n+a}=\dfrac{a}{n\left(n+a\right)}\)

b,

\(A=\dfrac{1}{2.3}+\dfrac{1}{3.4}+...+\dfrac{1}{99.100}\)

\(A=\dfrac{1}{2}-\dfrac{1}{3}+\dfrac{1}{3}-\dfrac{1}{4}+...+\dfrac{1}{99}-\dfrac{1}{100}\)

\(A=\dfrac{1}{2}-\dfrac{1}{100}=\dfrac{49}{100}\)

\(B=\dfrac{5}{1.4}+\dfrac{5}{4.7}+...+\dfrac{5}{100.103}\)

\(3B=\dfrac{5.3}{1.4}+\dfrac{5.3}{4.7}+...+\dfrac{5.3}{100.103}\)

\(3B=5\left(\dfrac{3}{1.4}+\dfrac{3}{4.7}+...+\dfrac{3}{100.103}\right)\)

\(3B=5\left(1-\dfrac{1}{4}+\dfrac{1}{4}-\dfrac{1}{7}+...+\dfrac{1}{100}-\dfrac{1}{103}\right)\)

\(3B=5\left(1-\dfrac{1}{103}\right)=5\cdot\dfrac{102}{103}=\dfrac{510}{103}\)

\(B=\dfrac{510}{103}:3=\dfrac{170}{103}\)

\(C=\dfrac{1}{15}+\dfrac{1}{35}+...+\dfrac{1}{2499}\)

\(C=\dfrac{1}{3.5}+\dfrac{1}{5.7}+...+\dfrac{1}{49.51}\)

\(2C=\dfrac{2}{3.5}+\dfrac{2}{5.7}+...+\dfrac{2}{49.51}\)

\(2C=\dfrac{1}{3}-\dfrac{1}{5}+\dfrac{1}{5}-\dfrac{1}{7}+...+\dfrac{1}{49}-\dfrac{1}{51}\)

\(2C=\dfrac{1}{3}-\dfrac{1}{51}=\dfrac{16}{51}\)

\(C=\dfrac{16}{51}:2=\dfrac{8}{51}\)

30 tháng 3 2017

1.

Ta có:

Vì b+1-b=1=>\(\dfrac{1}{b}-\dfrac{1}{b+1}=\dfrac{1}{b.\left(b+1\right)}\)<\(\dfrac{1}{b.b}\)(1)

Vì b-(b-1)=1=>\(\dfrac{1}{b-1}-\dfrac{1}{b}=\dfrac{1}{b.\left(b-1\right)}\)>\(\dfrac{1}{b.b}\)(2)

Từ (1) và (2)=>\(\dfrac{1}{b}-\dfrac{1}{b+1}< \dfrac{1}{b.b}< \dfrac{1}{b-1}-\dfrac{1}{b}\)

Câu 2 bạn hỏi bạn Bùi Ngọc Minh nhé PR cho nóleuleu

30 tháng 3 2017

Bài 2:

Ta có:S=\(\dfrac{1}{2^2}+\dfrac{1}{3^2}+\dfrac{1}{4^2}+....+\dfrac{1}{9^2}=\dfrac{1}{2.2}+\dfrac{1}{3.3}+\dfrac{1}{4.4}+...+\dfrac{1}{9.9}\)

S>\(\dfrac{1}{2.3}+\dfrac{1}{3.4}+\dfrac{1}{4.5}+...+\dfrac{1}{9.10}=\dfrac{1}{2}-\dfrac{1}{3}+\dfrac{1}{3}-\dfrac{1}{4}+\dfrac{1}{4}-\dfrac{1}{5}+...+\dfrac{1}{9}-\dfrac{1}{10}=\dfrac{1}{2}-\dfrac{1}{10}=\dfrac{2}{5}\left(1\right)\)

S<\(\dfrac{1}{1.2}+\dfrac{1}{2.3}+\dfrac{1}{3.4}+...+\dfrac{1}{8.9}=1-\dfrac{1}{2}+\dfrac{1}{2}-\dfrac{1}{3}+\dfrac{1}{3}-\dfrac{1}{4}+...+\dfrac{1}{8}-\dfrac{1}{9}=1-\dfrac{1}{9}=\dfrac{8}{9}\left(2\right)\)

Từ (1) và (2) suy ra \(\dfrac{2}{5}< S< \dfrac{8}{9}\)

7 tháng 4 2017

bài 2

a;đặt biểu thức là S
S < 1/1.2 + 1/2.3 + .......1/(n-1)n
= 1- 1/2 +1 /2 -1/3+........ + 1/n-1 - 1/n

= 1 -1/n <1

vậy S < 1

26 tháng 3 2017

=\(\dfrac{2^2.2^2.3^2.....9^2}{1.2^2.3^2.4^2....9^2.10}\)=\(\dfrac{2^2}{10}\)=\(\dfrac{2}{5}\)

31 tháng 1 2019

Câu 1: A

Câu 2: B