Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(E=\dfrac{1}{2}+\dfrac{1}{3}+\dfrac{1}{6}+\dfrac{1}{8}+\dfrac{1}{2}+\dfrac{1}{12}\)
\(E=\left(\dfrac{1}{2}+\dfrac{1}{2}\right)+\left(\dfrac{1}{3}+\dfrac{1}{6}\right)+\left(\dfrac{1}{8}+\dfrac{1}{12}+\dfrac{1}{24}\right)\)
\(E=\dfrac{2}{2}+\dfrac{3}{6}+\left(\dfrac{1}{8}+\dfrac{3}{24}\right)\)
\(E=1+\dfrac{1}{2}+\left(\dfrac{1}{8}+\dfrac{1}{8}\right)\)
\(E=\left(\dfrac{2}{2}+\dfrac{1}{2}\right)+\dfrac{2}{8}\)
\(E=\dfrac{3}{2}+\dfrac{1}{4}\)
\(E=\dfrac{6}{4}+\dfrac{1}{4}\)
\(E=\dfrac{7}{4}\)
A= 1/3+1/6+1/12+1/24+1/48+1/96
= (1/3+1/6)+(1/12+1/24)+(1/48+1/96)
= (2/6+1/6)+(2/24+1/24)+(2/96+1/96)
= 1/2+1/8+1/32
= 16/32+4/32+1/32
= 21/32
Vậy A=21/32
Giải:
A=1/3+1/6+1/12+1/24+1/48+1/96
A=1/3+(1/2.3+1/3.4)+(1/4.6+1/6.8)+1/96
A=1/3+(1/2-1/3+1/3-1/4)+[1/2.(2/4.6+2/6.8)]+1/96
A=1/3+(1/2-1/4)+[1/2.(1/4-1/6+1/6-1/8)]+1/96
A=1/3+1/4+[1/2.(1/4-1/8)]+1/96
A=1/3+1/4+[1/2.1/8]+1/96
A=1/3+1/4+1/16+1/96
A=7/12+7/96
A=21/32
a: \(=\dfrac{7+12-6}{13}=1\)
b: \(=\dfrac{13}{10}\cdot\dfrac{6-26}{13}=\dfrac{-20}{10}=-2\)
c: \(=\dfrac{3}{4}\cdot2-\dfrac{5}{2}\cdot\dfrac{-4}{3}=\dfrac{3}{2}+\dfrac{20}{6}=\dfrac{3}{2}+\dfrac{10}{3}=\dfrac{29}{6}\)
d: \(=\dfrac{3}{8}\cdot\dfrac{8}{5}+\dfrac{3}{5}\cdot\dfrac{2}{7}+\dfrac{3}{5}\cdot\dfrac{5}{7}=\dfrac{3}{5}+\dfrac{3}{5}=\dfrac{6}{5}\)
cảm ơn bn, mình đặt câu hỏi, bn thườg xuyên trả lời câu hỏi của mình. Thank you very much.
Bài này có cần phải tính nhanh ko vậy bn?
Nếu ko thì lấy máy tính mà tính cũng đc mà
đây là tính nhanh à nếu tính bình thường thì tính may tính là ra
a) 17/23 . 8/16 . 23/17. (-80) . 3/4
= (17/23 . 23/17) . (8/16 . 3/4) . (-80)
= 1 . 3/8 . (-80)
= 3/8 . (-80)
= -30
b) 5/11 . 18/29 - 5/11 . 8/29 + 5/11 . 19/29
= 5/11 . (18/29 - 8/29 + 19/29)
= 5/11 . 1
= 5/11
c)(13/23 + 1313/2323 - 131313/232323).(1/3+1/4 -7/12)
= (13/23 + 1313/2323 - 131313/232323).0
= 0
d) 12/2x2 . 22/2x3 . 32/3x4 . 42/4x5 . 52/5x6 . 62/6x7 . 72/7x8 . 82/8x9 . 92/9x10
= 1/2 . 2/3 . 3/4 . 4/5 . 5/6 . 6/7 . 7/8 . 8/9 .9/10
= 1/10
Khó nhìn quá. Bạn thông cảm nhé!
a: =>6/x=x/24
=>x^2=144
=>x=12 hoặc x=-12
b: =>x(1-7/12+3/8)=5/24
=>x*19/24=5/24
=>x=5/24:19/24=5/19
c: =>(x-1/3)^2=1+3/4+1/2=9/4
=>x-1/3=3/2 hoặc x-1/3=-3/2
=>x=11/6 hoặc x=-7/6
d: =>(x-3)^2=16
=>x-3=4 hoặc x-3=-4
=>x=-1 hoặc x=7
e: =>9/x=-1/3
=>x=-27
f: =>x-1/2=0 hoặc -x/2-3=0
=>x=1/2 hoặc x=-6
\(A=\dfrac{1}{2}+\dfrac{1}{6}+\dfrac{1}{12}+...+\dfrac{1}{9900}\)
\(A=\dfrac{1}{1\cdot2}+\dfrac{1}{2\cdot3}+\dfrac{1}{3\cdot4}+...+\dfrac{1}{99\cdot100}\)
\(A=1-\dfrac{1}{2}+\dfrac{1}{2}-\dfrac{1}{3}+\dfrac{1}{3}-\dfrac{1}{4}+...+\dfrac{1}{99}-\dfrac{1}{100}\)
\(A=1-\dfrac{1}{100}=\dfrac{99}{100}\)
\(B=\dfrac{1}{3}+\dfrac{1}{15}+\dfrac{1}{35}+..+\dfrac{1}{195}\) ( là 195 ms đúng ! )
\(B=\dfrac{1}{1\cdot3}+\dfrac{1}{3\cdot5}+\dfrac{1}{5\cdot7}+...+\dfrac{1}{13\cdot15}\)
\(B=\dfrac{1}{2}\left(1-\dfrac{1}{3}+\dfrac{1}{3}-\dfrac{1}{5}+...+\dfrac{1}{13}-\dfrac{1}{15}\right)\)
\(B=\dfrac{1}{2}\left(1-\dfrac{1}{15}\right)=\dfrac{1}{2}\cdot\dfrac{14}{15}=\dfrac{7}{15}\)
\(C=\dfrac{1}{2\cdot4}+\dfrac{1}{4\cdot6}+\dfrac{1}{6\cdot8}+...+\dfrac{1}{98\cdot100}\)
Rồi làm tương tự cân b nha!
\(D=\dfrac{1}{3}-\dfrac{1}{5}+\dfrac{1}{5}-\dfrac{1}{8}+\dfrac{1}{8}-\dfrac{1}{19}+\dfrac{1}{19}-\dfrac{1}{32}+\dfrac{1}{32}-\dfrac{1}{57}\)
\(+\dfrac{1}{57}-\dfrac{1}{87}\)
\(D=\dfrac{1}{3}-\dfrac{1}{87}=\dfrac{28}{87}\)
Đặt \(A=\dfrac{2}{3}+\dfrac{2}{6}+\dfrac{2}{12}+\dfrac{2}{24}+\dfrac{2}{48}+\dfrac{2}{98}+\dfrac{2}{192}\)
\(2A=\dfrac{4}{3}+\dfrac{2}{3}+\dfrac{2}{6}+\dfrac{2}{12}+\dfrac{2}{24}+\dfrac{2}{98}+\dfrac{2}{192}\)
\(2A-A=\left(\dfrac{4}{3}+\dfrac{2}{3}+\dfrac{2}{6}+\dfrac{2}{12}+\dfrac{2}{24}+\dfrac{2}{98}+\dfrac{2}{192}\right)-\left(\dfrac{2}{3}+\dfrac{2}{6}+\dfrac{2}{12}+\dfrac{2}{24}+\dfrac{2}{48}+\dfrac{2}{98}+\dfrac{2}{192}\right)\)
\(A=\dfrac{4}{3}-\dfrac{2}{192}\)
\(A=\dfrac{127}{96}\)
Vậy \(A=\dfrac{127}{96}\)
Mình hơn nhầm ở chỗ 98 viết lại thành 96. thông cảm nha mình làm lại cho:
Đặt \(A=\dfrac{2}{3}+\dfrac{2}{6}+\dfrac{2}{12}+\dfrac{2}{24}+\dfrac{2}{48}+\dfrac{2}{96}+\dfrac{2}{192}\)
\(2A=\dfrac{4}{3}+\dfrac{2}{3}+\dfrac{2}{6}+\dfrac{2}{12}+\dfrac{2}{24}+\dfrac{2}{96}+\dfrac{2}{192}\)
\(2A-A=\left(\dfrac{4}{3}+\dfrac{2}{3}+\dfrac{2}{6}+\dfrac{2}{12}+\dfrac{2}{24}+\dfrac{2}{96}+\dfrac{2}{192}\right)-\left(\dfrac{2}{3}+\dfrac{2}{6}+\dfrac{2}{12}+\dfrac{2}{24}+\dfrac{2}{48}+\dfrac{2}{96}+\dfrac{2}{192}\right)\)
\(A=\dfrac{4}{3}-\dfrac{2}{192}\)
\(A=\dfrac{127}{96}\)
Vậy \(A=\dfrac{127}{96}\)