Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Đặt A=1/2+1/4+1/8+..+1/1024
Ax2=1+1/2+1/4+1/8+..+1/512( Nhân cả 2 vế với 2)
Ax2-A=(1+1/2+1/4+1/8+..+1/512)-(1/2+1/4+1/8+..+1/1024)
<=>A=1-1/1024
<=>A=1023/1024
Vậy biểu thức đã cho = 1023/1024
\(\dfrac{1}{4}+\dfrac{1}{8}+\dfrac{1}{16}+\dfrac{1}{32}+\dfrac{1}{64}+\dfrac{1}{128}\\ =\dfrac{1}{2}-\dfrac{1}{4}+\dfrac{1}{4}-\dfrac{1}{8}+\dfrac{1}{8}-\dfrac{1}{16}+...+\dfrac{1}{64}-\dfrac{1}{128}\\ =\dfrac{1}{2}-\dfrac{1}{128}\\ =\dfrac{63}{128}\)
\(7m^28dm^2=7,08m^2\)
C = \(\dfrac{1}{2}\) + \(\dfrac{1}{4}\) + \(\dfrac{1}{8}\) + \(\dfrac{1}{16}\) + \(\dfrac{1}{32}\) + \(\dfrac{1}{64}\) + \(\dfrac{1}{128}\)
2\(\times\)C = 1 + \(\dfrac{1}{2}\) + \(\dfrac{1}{4}\) + \(\dfrac{1}{8}\) + \(\dfrac{1}{16}\) + \(\dfrac{1}{32}\) + \(\dfrac{1}{64}\)
2 \(\times\) C - C = 1 - \(\dfrac{1}{128}\)
C = \(\dfrac{127}{128}\)
\(A=\dfrac{1}{2}+\dfrac{1}{4}+\dfrac{1}{8}+...+\dfrac{1}{512}+\dfrac{1}{1024}\)
\(=\dfrac{1}{2}+\dfrac{1}{2^2}+\dfrac{1}{2^3}+...+\dfrac{1}{2^{10}}\)
\(\Rightarrow2A=1+\dfrac{1}{2}+\dfrac{1}{2^2}+...+\dfrac{1}{2^9}\)
\(\Rightarrow2A-A=A=1-\dfrac{1}{2^{10}}\)
\(=\left(2+4+6+...+98\right)\left(6-6\right)\left(\dfrac{1}{2}+\dfrac{1}{4}+...+\dfrac{1}{512}\right)\)
=0
a) \(=\dfrac{254x\left(400-1\right)-145}{254+\left(400-1\right)x253}=\dfrac{254x400-254-145}{254+253x400-253}\)
\(=\dfrac{101600-399}{101200+1}=\dfrac{101211}{101201}=\dfrac{101201+10}{101201}=1+\dfrac{10}{101201}\)
b) \(=\dfrac{5392+\left(600+1\right)x5391}{5392x\left(600+1\right)-69}=\dfrac{5392+600x5391+5391}{5392x600+5392-69}\)
\(=\dfrac{10783+3234600}{3235200+5323}=\dfrac{\text{3245383}}{\text{3240523}}=\dfrac{3240523+60}{3240523}=1+\dfrac{60}{3240523}\)
c) \(=\dfrac{1}{2}x\left(\dfrac{1}{2}-\dfrac{1}{4}\right)+\dfrac{1}{2}x\left(\dfrac{1}{4}-\dfrac{1}{8}\right)+\dfrac{1}{32}\)
\(=\dfrac{1}{2}x\left(\dfrac{1}{2}-\dfrac{1}{4}+\dfrac{1}{4}-\dfrac{1}{8}\right)+\dfrac{1}{32}\)
\(=\dfrac{1}{2}x\left(\dfrac{1}{2}-\dfrac{1}{8}\right)+\dfrac{1}{32}=\dfrac{3}{16}+\dfrac{1}{32}=\dfrac{7}{32}\)
A = \(\dfrac{1}{2}\) + \(\dfrac{1}{4}\) + \(\dfrac{1}{8}\) + \(\dfrac{1}{16}\) + \(\dfrac{1}{32}\) +.........+\(\dfrac{1}{512}\)
2xA = 1+ \(\dfrac{1}{2}\) + \(\dfrac{1}{4}\) + \(\dfrac{1}{8}\) +\(\dfrac{1}{16}\) + \(\dfrac{1}{32}\) +.....+\(\dfrac{1}{256}\)
2xA - A = 1 - \(\dfrac{1}{216}\)
A = \(\dfrac{215}{216}\)