Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
A = -1-\(\dfrac{1}{3}\)-\(\dfrac{1}{6}\)-\(\dfrac{1}{10}\)-\(\dfrac{1}{15}\)-...-\(\dfrac{1}{1225}\)
= -1-(\(\dfrac{1}{3}\)+\(\dfrac{1}{6}\)+\(\dfrac{1}{10}\)+\(\dfrac{1}{15}\)+...+\(\dfrac{1}{1225}\))
Đặt B = \(\dfrac{1}{3}\)+\(\dfrac{1}{6}\)+\(\dfrac{1}{10}\)+\(\dfrac{1}{15}\)+...+\(\dfrac{1}{1225}\)
Ta có : B = 2(\(\dfrac{1}{6}\)+\(\dfrac{1}{12}\)+\(\dfrac{1}{20}\)+\(\dfrac{1}{30}\)+...+\(\dfrac{1}{2450}\))
= 2(\(\dfrac{1}{2\text{×}3}\)+\(\dfrac{1}{3\text{×}4}\)+\(\dfrac{1}{4\text{×}5}\)+\(\dfrac{1}{5\text{×}6}\)+...+\(\dfrac{1}{49\text{×}50}\))
= 2(\(\dfrac{1}{2}\)-\(\dfrac{1}{3}\)+\(\dfrac{1}{3}\)-\(\dfrac{1}{4}\)+\(\dfrac{1}{4}\)-\(\dfrac{1}{5}\)+\(\dfrac{1}{5}\)-\(\dfrac{1}{6}\)+...+\(\dfrac{1}{49}\)-\(\dfrac{1}{50}\)
= 2(\(\dfrac{1}{2}\)-\(\dfrac{1}{50}\))
= 2×\(\dfrac{24}{50}\)
= \(\dfrac{24}{25}\)
Thay B vào A ta có :
A = -1-\(\dfrac{24}{25}\)
=> A = \(\dfrac{-49}{25}\)
Cho mik một tick nhé thankss
\(B=-\left(1+\dfrac{1}{3}+\dfrac{1}{6}+\dfrac{1}{10}+\dfrac{1}{15}+...+\dfrac{1}{1225}\right)\)
\(\dfrac{1}{2}B=-\left(\dfrac{1}{2}+\dfrac{1}{6}+\dfrac{1}{12}+\dfrac{1}{20}+\dfrac{1}{30}+...+\dfrac{1}{2450}\right)\)
\(\dfrac{1}{2}B=-\left(\dfrac{1}{1.2}+\dfrac{1}{2.3}+\dfrac{1}{2.4}+\dfrac{1}{4.5}+...+\dfrac{1}{49.50}\right)\)
\(\dfrac{1}{2}B=-\left(1-\dfrac{1}{50}\right)\)
\(\dfrac{1}{2}B=-1+\dfrac{1}{50}\)
\(\dfrac{1}{2}B=\dfrac{-49}{50}\)
\(B=\dfrac{-49}{25}\)
\(B=-\dfrac{2}{2}-\dfrac{2}{6}-\dfrac{2}{12}-...-\dfrac{2}{2450}\)
\(=-2\left(\dfrac{1}{2}+\dfrac{1}{6}+...+\dfrac{1}{2450}\right)\)
\(=-2\left(1-\dfrac{1}{2}+\dfrac{1}{2}-\dfrac{1}{3}+...+\dfrac{1}{49}-\dfrac{1}{50}\right)\)
=-2*49/50
=-49/25
\(-1-\dfrac{1}{3}-\dfrac{1}{6}-...-\dfrac{1}{1225}\)
\(=\dfrac{-1}{2}\left(\dfrac{1}{2}+\dfrac{1}{6}+\dfrac{1}{12}+...+\dfrac{1}{2450}\right)\)
\(=\dfrac{-1}{2}\left(\dfrac{1}{1.2}+\dfrac{1}{2.3}+\dfrac{1}{3.4}+...+\dfrac{1}{49.50}\right)\)
\(=\dfrac{-1}{2}\left(1-\dfrac{1}{2}+\dfrac{1}{2}-\dfrac{1}{3}+\dfrac{1}{3}-\dfrac{1}{4}+...+\dfrac{1}{49}-\dfrac{1}{50}\right)\)
\(=\dfrac{-1}{2}\left(1-\dfrac{1}{50}\right)\)
\(=\dfrac{-1}{2}.\dfrac{49}{50}=\dfrac{-49}{100}\)
Vậy...
a) \(A=\dfrac{5^2}{11.16}+\dfrac{5^2}{16.21}+\dfrac{5^2}{21.26}+...+\dfrac{5^2}{56.61}\)
\(A=5^2.\left(\dfrac{1}{11.16}+\dfrac{1}{16.21}+\dfrac{1}{21.26}+...+\dfrac{1}{56.61}\right)\)
\(A=\left(5^2:5\right).\left(\dfrac{5}{11.16}+\dfrac{5}{16.21}+\dfrac{5}{21.26}+...+\dfrac{5}{56.61}\right)\)
\(A=5.\left(\dfrac{1}{11}-\dfrac{1}{16}+\dfrac{1}{16}-\dfrac{1}{21}+\dfrac{1}{21}-\dfrac{1}{26}+...+\dfrac{1}{56}-\dfrac{1}{61}\right)\)
\(A=5.\left(\dfrac{1}{11}-\dfrac{1}{61}\right)\)
\(A=5.\dfrac{50}{671}\)
\(Á=\dfrac{250}{671}\)
b: \(=-2\left(\dfrac{1}{2}+\dfrac{1}{6}+...+\dfrac{1}{2450}\right)\)
\(=-2\left(1-\dfrac{1}{2}+\dfrac{1}{2}-\dfrac{1}{3}+...+\dfrac{1}{49}-\dfrac{1}{50}\right)\)
\(=-2\cdot\dfrac{49}{50}=-\dfrac{49}{25}\)
\(\Leftrightarrow D=1-\dfrac{1}{3}-\dfrac{1}{6}-\dfrac{1}{10}-\dfrac{1}{15}-\dfrac{1}{21}-\dfrac{1}{28}\)
\(\Rightarrow\dfrac{1}{2}D=\dfrac{1}{2}-\dfrac{1}{2.3}-\dfrac{1}{3.4}-\dfrac{1}{4.5}-\dfrac{1}{5.6}-\dfrac{1}{6.7}-\dfrac{1}{7.8}\)
\(\Rightarrow D\dfrac{1}{2}=\dfrac{1}{2}-\dfrac{1}{2}+\dfrac{1}{3}-\dfrac{1}{3}+...+\dfrac{1}{7}-\dfrac{1}{7}+\dfrac{1}{8}\)
\(\Rightarrow D=\dfrac{1}{8}.2=\dfrac{1}{4}\)
Vậy D=1/4
Bai 1: tính nhanh A) -5/9 + 3/5 - 3/9 + -2/5 B) -5/13 + (3/5 + 3/1 - 4/10) C) 5/17 - 9/15 - 2/-17 + -2/15 D) (1/9 - 9/17) + 3/6 - ( 12/17 - 1/2) + -1/9 Bài 5: tính tổng A) 1/3 + -1/4 + 1/5 + 1/-6 + -1/-7 + 1/6 + -1/5 + 1/4 + 1/3 B) 1/12 +1/2.3+1/3.4+..+1/99100 Giúp mình nhé nhanh
c: Ta có: \(-\dfrac{5}{13}-\left(\dfrac{3}{5}+\dfrac{3}{13}-\dfrac{4}{10}\right)\)
\(=\dfrac{-5}{13}-\dfrac{3}{5}-\dfrac{3}{13}+\dfrac{2}{5}\)
\(=\dfrac{-8}{13}-\dfrac{1}{5}\)
\(=\dfrac{-53}{65}\)
d: Ta có: \(\left(\dfrac{1}{9}-\dfrac{9}{17}\right)+\dfrac{3}{6}-\left(\dfrac{12}{17}-\dfrac{1}{2}\right)+\dfrac{5}{9}\)
\(=\dfrac{1}{9}-\dfrac{9}{17}+\dfrac{1}{2}-\dfrac{12}{17}+\dfrac{1}{2}+\dfrac{5}{9}\)
\(=\dfrac{2}{3}+1-\dfrac{21}{17}\)
\(=\dfrac{22}{51}\)
\(D=-\left(1+\dfrac{1}{3}+\dfrac{1}{6}+\dfrac{1}{10}+\dfrac{1}{15}+...+\dfrac{1}{1255}\right)\)
\(\dfrac{1}{2}D=-\left(\dfrac{1}{2}+\dfrac{1}{2.3}+\dfrac{1}{2.6}+\dfrac{1}{2.10}+\dfrac{1}{2.15}+...+\dfrac{1}{2.1255}\right)\)
\(\dfrac{1}{2}D=-\left(\dfrac{1}{1.2}+\dfrac{1}{2.3}+\dfrac{1}{3.4}+\dfrac{1}{4.5}+\dfrac{1}{5.6}+...+\dfrac{1}{49.50}\right)\)
\(\dfrac{1}{2}D=-\left(1-\dfrac{1}{2}+\dfrac{1}{2}-\dfrac{1}{3}+\dfrac{1}{3}-\dfrac{1}{4}+\dfrac{1}{4}-\dfrac{1}{5}+\dfrac{1}{5}-\dfrac{1}{6}+...+\dfrac{1}{49}-\dfrac{1}{50}\right)\)
\(\dfrac{1}{2}D=-\left(1-\dfrac{1}{50}\right)=-\dfrac{49}{50}\)
\(D=-\dfrac{49}{50}:\dfrac{1}{2}=-\dfrac{49}{25}\)
Bạn tham khảo nhé.