\(\frac{1}{1x2x3}\) +\(\frac{1}{2x3x4}\)+...">
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

11 tháng 3 2018

\(2C=\frac{3-1}{1.2.3}+\frac{4-2}{2.3.4}+\frac{5-3}{3.4.5}+...+\frac{39-37}{37.38.39}\)
\(2C=\frac{1}{1.2}-\frac{1}{2.3}+\frac{1}{2.3}-\frac{1}{3.4}+\frac{1}{3.4}-\frac{1}{4.5}+...+\frac{1}{37.38}-\frac{1}{38.39}\)
\(2C=\frac{1}{1.2}-\frac{1}{38.39}\)
\(C=\frac{617}{1482}\)

\(3D=1+\frac{1}{3}+\frac{1}{3^2}+...+\frac{1}{3^7}\)
\(3D-D=1-\frac{1}{3^8}\)
\(D=\frac{1}{2}-\frac{1}{2.3^8}\)

11 tháng 3 2018

Ta có:\(\frac{1}{2}.\left(\frac{1}{1.2}-\frac{1}{2.3}+\frac{1}{2.3}-\frac{1}{3.4}+....+\frac{1}{37.38}-\frac{1}{38.39}\right)\)

\(=\frac{1}{2}.\left(\frac{1}{2}-\frac{1}{38.39}\right)\)

b,\(D=\frac{1}{3}+\frac{1}{3^2}+...+\frac{1}{3^8}\)

\(\Rightarrow3D=1+\frac{1}{3}+\frac{1}{3^2}+.....+\frac{1}{3^7}\)

\(\Rightarrow2D=1-\frac{1}{3^8}\)

\(\Rightarrow D=\frac{3^8-1}{3^8}:2\)

7 tháng 2 2020

H = \(\frac{1}{1.2}-\frac{1}{1.2.3}+\frac{1}{2.3}-\frac{1}{2.3.4}+\frac{1}{3.4}-\frac{1}{3.4.5}+...+\frac{1}{99.100}-\frac{1}{99.100.101}\)

   \(=\left(\frac{1}{1.2}+\frac{1}{2.3}+\frac{1}{3.4}+....+\frac{1}{99.100}\right)-\left(\frac{1}{1.2.3}+\frac{1}{2.3.4}+....+\frac{1}{99.100.101}\right)\)

Đặt G = \(\left(\frac{1}{1.2}+\frac{1}{2.3}+\frac{1}{3.4}+....+\frac{1}{99.100}\right)\)

          = \(1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+....+\frac{1}{99}-\frac{1}{100}\)

          = \(1-\frac{1}{100}\)

           = \(\frac{99}{100}\)

Đặt K = \(\left(\frac{1}{1.2.3}+\frac{1}{2.3.4}+....+\frac{1}{99.100.101}\right)\)

=>2K = \(\left(\frac{2}{1.2.3}+\frac{2}{2.3.4}+....+\frac{2}{99.100.101}\right)\)

          = \(\frac{1}{1.2}-\frac{1}{2.3}+\frac{1}{2.3}-\frac{1}{3.4}+...+\frac{1}{99.100}-\frac{1}{100.101}\)

          = \(\frac{1}{1.2}-\frac{1}{100.101}\)

          = \(\frac{1}{2}-\frac{1}{10100}\)

          = \(\frac{5049}{10100}\)

=> K =\(\frac{5049}{10100}:2=\frac{5049}{10100}.\frac{1}{2}=\frac{5049}{20200}\)

Thay G,K vào H ta có :

H = \(\frac{99}{100}-\frac{5049}{20200}\)

Tự tính :)

7 tháng 2 2020

\(H=\frac{1}{1.2}-\frac{1}{1.2.3}+\frac{1}{2.3}-\frac{1}{2.3.4}+...+\frac{1}{99.100}-\frac{1}{99.100.101}\)

\(=\left(\frac{1}{1.2}+\frac{1}{2.3}+...+\frac{1}{99.100}\right)-\left(\frac{1}{1.2.3}+\frac{1}{2.34}+...+\frac{1}{99.100.101}\right)\)

\(=\left(1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+...+\frac{1}{99}-\frac{1}{100}\right)-\frac{1}{2}\left(\frac{2}{1.2.3}+\frac{2}{2.3.4}+...+\frac{2}{99.100.101}\right)\)

\(=\left(1-\frac{1}{100}\right)-\frac{1}{2}\left(\frac{1}{1.2}-\frac{1}{2.3}+\frac{1}{2.3}-\frac{1}{3.4}+...+\frac{1}{99.100}-\frac{1}{100.101}\right)\)

\(=\frac{99}{100}-\frac{1}{2}\left(\frac{1}{1.2}-\frac{1}{100.101}\right)=\frac{99}{100}-\frac{1}{2}.\frac{5049}{10100}=\frac{99}{100}-\frac{5049}{20200}=\frac{14949}{20200}\)

30 tháng 4 2018

a)\(=\frac{-3}{7}+\frac{15}{26}-\frac{2}{13}+\frac{3}{7}\)

\(=\left(\frac{-3}{7}+\frac{3}{7}\right)-\left(\frac{15}{26}+\frac{2}{13}\right)\)

\(=0-\frac{19}{26}\)

\(=-\frac{19}{26}\)

30 tháng 4 2018

c)\(=\frac{-11}{23}.\left(\frac{6}{7}+\frac{8}{7}\right)-\frac{1}{23}\)

\(=\frac{-11}{23}.2-\frac{1}{23}\)

\(=\frac{-22}{23}-\frac{1}{23}\)

\(=-1\)

8 tháng 8 2016

\(A=\frac{1}{6.10}+\frac{1}{10.14}+\frac{1}{14.18}+\frac{1}{18.22}+\frac{1}{22.26}+\frac{1}{26.30}\)

  \(=\frac{1}{4}.\left(\frac{1}{6}-\frac{1}{10}+\frac{1}{10}-\frac{1}{14}+\frac{1}{14}-\frac{1}{18}+\frac{1}{18}-\frac{1}{22}+\frac{1}{22}-\frac{1}{26}+\frac{1}{26}-\frac{1}{30}\right)\)

     \(=\frac{1}{4}.\left(\frac{1}{6}-\frac{1}{30}\right)=\frac{1}{4}.\frac{2}{15}=\frac{1}{30}\)

\(B=\frac{5}{2.3}+\frac{5}{3.4}+\frac{5}{4.5}+...+\frac{5}{8.9}\)\(=5.\left(\frac{1}{2.3}+\frac{1}{3.4}+\frac{1}{4.5}+...+\frac{1}{8.9}\right)\)     \(=5.\left(\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+\frac{1}{4}-\frac{1}{5}+...+\frac{1}{8}-\frac{1}{9}\right)\)

  \(=5.\left(\frac{1}{2}-\frac{1}{9}\right)=5.\frac{7}{18}=\frac{35}{18}\)

\(C=\left(\frac{7^2}{2.9}+\frac{7^2}{9.16}+....+\frac{7^2}{65.72}\right):\left(\frac{1}{3}-\frac{7}{36}\right)\)

   \(=7.\left(\frac{7}{2.9}+\frac{7}{9.16}+...+\frac{7}{65.72}\right):\frac{5}{36}\) \(=7.\left(\frac{1}{2}-\frac{1}{9}+\frac{1}{9}-\frac{1}{16}+...+\frac{1}{65}-\frac{1}{72}\right):\frac{5}{36}\)'

    \(=7.\left(\frac{1}{2}-\frac{1}{72}\right):\frac{5}{36}=7.\frac{35}{72}:\frac{5}{36}=\frac{49}{2}\)

\(D=\frac{2}{2.3.4}+\frac{2}{3.4.5}+...+\frac{2}{37.38.39}+\frac{2}{38.39.40}\)

     \(=2.\left(\frac{1}{2.3.4}+\frac{1}{3.4.5}+...+\frac{1}{37.38.39}+\frac{1}{38.39.40}\right)\)

     \(=2.\frac{1}{2}.\left(\frac{1}{2.3}-\frac{1}{3.4}+\frac{1}{3.4}-\frac{1}{4.5}+...+\frac{1}{37.38}-\frac{1}{38.39}+\frac{1}{38.39}-\frac{1}{39.40}\right)\)

        \(=\frac{1}{2.3}-\frac{1}{39.40}=\frac{259}{1560}\)

\(E=\frac{202202}{1212}+\frac{202202}{2020}+\frac{202202}{3030}+\frac{202202}{4242}+\frac{202202}{5656}\)

    \(=202202.\left(\frac{1}{3.4.101}+\frac{1}{4.5.101}+\frac{1}{5.6.101}+\frac{1}{6.7.101}+\frac{1}{7.8.101}\right)\)

      \(=2002.\left(\frac{1}{3.4}+\frac{1}{4.5}+\frac{1}{5.6}+\frac{1}{6.7}+\frac{1}{7.8}\right)\)

        \(=2002.\left(\frac{1}{3}-\frac{1}{4}+\frac{1}{4}-\frac{1}{5}+\frac{1}{5}-\frac{1}{6}+\frac{1}{6}-\frac{1}{7}+\frac{1}{7}-\frac{1}{8}\right)\)

         \(=2002.\left(\frac{1}{3}-\frac{1}{8}\right)=2002.\frac{5}{24}=\frac{5005}{12}\)

     

    

24 tháng 7 2019

a) \(\frac{4}{11}-\frac{7}{15}+\frac{7}{11}-\frac{5}{15}\)

\(=\left(\frac{4}{11}+\frac{7}{11}\right)-\left(\frac{7}{15}+\frac{5}{15}\right)\)

\(=1-\frac{4}{5}\)

\(=\frac{1}{5}\)

b) \(\frac{7}{3}-\frac{4}{9}-\frac{1}{3}-\frac{5}{9}\)

\(=\left(\frac{7}{3}-\frac{1}{3}\right)-\left(\frac{4}{9}+\frac{5}{9}\right)\)

\(=2-1\)

\(=1\)

c) \(\frac{1}{4}+\frac{7}{33}-\frac{5}{3}\)

\(=\frac{-1}{4}+\frac{-16}{11}\)

\(=\frac{-75}{44}\)

d) \(\frac{-3}{4}\times\frac{8}{11}-\frac{3}{11}\times\frac{1}{2}\)

\(=\frac{-6}{11}-\frac{3}{22}\)

\(=\frac{15}{22}\)

e) \(\frac{1}{15}+\frac{1}{35}+\frac{1}{63}+\frac{1}{99}+\frac{1}{143}+\frac{1}{195}\) 

\(=\frac{1}{3\times5}+\frac{1}{5\times7}+\frac{1}{7\times9}+\frac{1}{9\times11}+\frac{1}{11\times13}+\frac{1}{13\times15}\)

\(=\frac{1}{3}-\frac{1}{5}+\frac{1}{5}-\frac{1}{7}+\frac{1}{7}-\frac{1}{9}+\frac{1}{9}-\frac{1}{11}+\frac{1}{11}-\frac{1}{13}+\frac{1}{13}-\frac{1}{15}\)

\(=\frac{1}{3}-\frac{1}{15}\)

\(=\frac{4}{15}\)

25 tháng 4 2018

a) = 3/3 x ( -24/54 +45/54 ) : 7/12

   = 1 x 21/54 x 12/7

   = 18/27 

( hiện tại mik chỉ lm đc thế này thui. thông cảm nk )

25 tháng 6 2018

a ) Co :

 1/1.2 - 1/2.3 = 2/1.2.3 

 1/2.3 - 1/3.4 = 2/2.3.4

 ...

 1/37.38 - 1/38.39 = 2/37.38.39

=> 2M = 2/1.2.3 + 2/2.3.4 + ... + 2/37.38.39

=> 2M = 1/1.2 - 1/2.3 + 1/2.3 - 1/3.4 + ... + 1/37.38 - 1/38.39

=> 2M = 1/2 - 1/1482

=> 2M = 370/741

=> M = 185/741

B ) A = 1/3 + 1/3^2 + 1/3^3 + ... + 1/3^8

3A = 1 + 1/3 + 1/3^2 + ... + 1/3^7

3A - A = ( 1 + 1/3 + 1/3^2 + ... + 1/3^7 ) - ( 1/3 + 1/3^2 + 1/3^3 + ... + 1/3^8 )

2A = 1 - 1/3^8

A = ( 1 - 1/3^8 ) / 2

3 tháng 8 2020

a) \(\frac{7}{5}.\frac{-31}{125}.\frac{1}{2}.\frac{10}{17}.\frac{-1}{2^3}=\frac{7.\left(-31\right).1.10.\left(-1\right)}{5.2.125.17.2^3}=\frac{31.7}{17.125.2^3}=\frac{217}{17000}\)

b) \(\left(\frac{17}{28}+\frac{18}{29}-\frac{19}{30}-\frac{20}{31}\right).\left(\frac{-5}{12}+\frac{1}{4}+\frac{1}{6}\right)=\left(\frac{17}{28}+\frac{18}{29}-\frac{19}{30}-\frac{20}{31}\right).0=0\)

c) \(\left(\frac{1}{2}+1\right).\left(\frac{1}{3}+1\right).\left(\frac{1}{4}+1\right)...\left(\frac{1}{99}+1\right)=\frac{3}{2}.\frac{4}{3}.\frac{5}{4}...\frac{100}{99}=\frac{3.4.5...100}{2.3.4...99}=\frac{100}{2}=50\)

d) \(\left(\frac{1}{2}-1\right)\left(\frac{1}{3}-1\right)\left(\frac{1}{4}-1\right)...\left(\frac{1}{100}-1\right)=\frac{-1}{2}.\frac{-2}{3}.\frac{-3}{4}...\frac{-99}{100}=\frac{-\left(1.2.3..99\right)}{2.3.4...100}=-\frac{1}{100}\)

e) \(\frac{3}{2^2}.\frac{8}{3^2}.\frac{15}{4^2}...\frac{899}{30^2}=\frac{1.3}{2.2}.\frac{2.4}{3.3}.\frac{3.5}{4.4}...\frac{29.31}{30.30}=\frac{1.3.2.4.3.5...29.31}{2.2.3.3.4.4...30.30}=\frac{\left(1.2.3..29\right).\left(3.4.5...31\right)}{\left(2.3.4...30\right).\left(2.3.4...30\right)}\)

\(=\frac{1.31}{30.2}=\frac{31}{60}\)

Tìm x :

a) \(2.x.\frac{-3}{4}=-\frac{5}{12}\)

\(\Rightarrow2x=-\frac{5}{12}:-\frac{3}{4}\)

\(\Rightarrow2x=\frac{5}{9}\)

\(\Rightarrow x=\frac{5}{9}:2\)

\(\Rightarrow x=\frac{5}{18}\)

Vậy : \(x=\frac{5}{18}\)

b) \(\frac{2}{3}+\frac{1}{3}.x=7\)

\(\Rightarrow\frac{1}{3}.x=7-\frac{2}{3}\)

\(\Rightarrow\frac{1}{3}.x=\frac{19}{3}\)

\(\Rightarrow x=\frac{19}{3}:\frac{1}{3}\)

\(\Rightarrow x=19\)

Vậy : \(x=19\)

c) \(\left(4.x+\frac{1}{8}\right)=\frac{3}{10}\)

\(\Rightarrow4.x=\frac{3}{10}-\frac{1}{8}\)

\(\Rightarrow4.x=\frac{7}{40}\)

\(\Rightarrow x=\frac{7}{40}:4\)

\(\Rightarrow x=\frac{7}{160}\)

Vậy : \(x=\frac{7}{160}\)

d) \(\frac{1}{3}.x-5=1\frac{1}{2}\)

\(\Rightarrow\frac{1}{3}.x-5=\frac{3}{2}\)

\(\Rightarrow\frac{1}{3}.x=\frac{3}{2}+5\)

\(\Rightarrow\frac{1}{3}.x=\frac{13}{2}\)

\(\Rightarrow x=\frac{13}{2}:\frac{1}{3}\)

\(\Rightarrow x=\frac{39}{2}\)

Vậy : \(x=\frac{39}{2}\)

e) \(-\frac{2}{3}.x+\frac{1}{3}=-\frac{1}{2}\)

\(\Rightarrow-\frac{2}{3}.x=-\frac{1}{2}-\frac{1}{3}\)

\(\Rightarrow-\frac{2}{3}.x=-\frac{5}{6}\)

\(\Rightarrow x=-\frac{5}{6}:\left(-\frac{2}{3}\right)\)

\(\Rightarrow x=\frac{5}{4}\)

Vậy : \(x=\frac{5}{4}\)