Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) \(3.5^2+15.2^2-26\div2\)
= 3.25 + 15.4 - 13
= 75 + 60 - 13
= 135 - 13
= 122
b) \(5^3.2-100\div4+2^3.5\)
= 125.2 - 25 + 8.5
= 250 - 25 + 40
= 225 + 40
= 265
c)\(6^2\div9+50.2-3^3.33\)
= 36 : 9 + 100 - 9.33
= 4 + 100 - 297
= 104 - 297
= -193
d)\(3^2.5+2^3.10-81\div3\)
= 9.5 + 8.10 - 27
= 45 + 80 - 27
= 125 - 27
= 98
e) \(5^{13}\div5^{10}-25.2^2\)
= 53 - 25.4
= 125 - 100
= 25
f) \(20\div2^2+5^9\div5^8\)
= 20 : 4 + 5
= 5 + 5
= 10
Tinh nhanh : 35 ( 14 - 23 ) - 23 ( 14 - 35 )
32 . ( - 39 ) + 16 . ( -22 )
35 (14 - 23) - 23(14-35)
32x(-39)+16.(-22)
=16x(-78)+16.(-22)
=16x(-78+-22)
=16x-100
=-1600
=35x14 - 35x23 - 23x14-23x35
=(35x14 - 23 x 14)-(35x23 - 23x35)
=14x(35-23)-0
=14x12
=168
chơi bang bang thì k nha
35 (14 - 23) - 23(14-35)
=35.14 - 35.23 - 23.14-23.35
=(35.14 - 23 . 14)-(35.23 - 23.35)
=14.(35-23)-0
=14.12
=168
32.(-39)+16.(-22)
=16.(-78)+16.(-22)
=16.(-78+-22)
=16.-100
=-1600
a, A = 1 + 3 + 32 + 33 + ... + 32000
3.A = 3 + 32 + 33+ 33+... + 32001
3A - A = 3 + 32 + 33 + ... + 32001 - (1 + 3 + 32 + 33 + ... + 32000)
2A = 3 + 32 + 33 + ... + 32001 - 1 - 3 - 32 - 33 - ... - 32000
2A = 32001 - 1
A = \(\dfrac{3^{2001}-1}{2}\)
a, 27.75 + 25.27 – 150
= 2025 + 675 – 150 = 2550
b, 142 – [50 – ( 2 3 .10 – 2 3 .5)]
= 142 – [50 – (80 – 40)] = 132
c, 375:{32 – [4+( 5 . 3 2 – 42]} – 14
= 375:{32 – [4+(45 – 42)]} – 14
= 375:(32 – 7) – 14 = 15 – 14 = 1
d, {210:[16+3.(6+3. 2 2 )]} – 3
= [210:(16+3.18)] – 3
= 210 : 70 – 3 = 3 – 3 = 0
a, 27.75 + 25.27 – 150
= 2025 + 675 – 150 = 2550
b, 142 – [50 – ( 2 3 .10 – 2 3 .5)]
= 142 – [50 – (80 – 40)] = 132
c, 375:{32 – [4+( 5 . 3 2 – 42]} – 14
= 375:{32 – [4+(45 – 42)]} – 14
= 375:(32 – 7) – 14 = 15 – 14 = 1
d, {210:[16+3.(6+3. 2 2 )]} – 3
= [210:(16+3.18)] – 3
= 210 : 70 – 3 = 3 – 3 = 0
a) 4 ; 8 ; 16 ; 32 ; 64
b) 9 ; 27 ; 81 ; 243
c) 16 ; 64 ; 256
d) 25 ; 125
Chúc bạn học tốt!! ^^
a) \(2^2=4\)
\(2^3=8\)
\(2^4=16\)
\(2^5=32\)
\(2^6=64\)
b) \(3^2=3\)
\(3^3=27\)
\(3^4=81\)
\(3^5=243\)
c) \(4^2=16\)
\(4^3=64\)
\(4^4=256\)
d) \(5^2=25\)
\(5^3=125\)
\(A=2+2^2+...+2^{20}\)
\(2A=2^2+2^3+...+2^{21}\)
\(2A-A=2^2+2^3+...+2^{21}-2-2^2-...-2^{20}\)
\(A=2^{21}-2\)
___________
\(B=5+5^2+...+5^{50}\)
\(5B=5^2+5^3+...+5^{51}\)
\(5B-B=5^2+5^3+...+5^{51}-5-5^2-...-5^{50}\)
\(4B=5^{51}-5\)
\(B=\dfrac{5^{51}-5}{4}\)
___________
\(C=1+3+3^2+...+3^{100}\)
\(3C=3+3^2+...+3^{101}\)
\(3C-C=3+3^2+...+3^{101}-1-3-3^2-...-3^{100}\)
\(2C=3^{101}-1\)
\(C=\dfrac{3^{101}-1}{2}\)