\(\dfrac{\dfrac{2006}{2}+\dfrac{2006}{3}+\dfrac{2006}{4} +....">
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

\(C=\dfrac{2006\left(\dfrac{1}{2}+\dfrac{1}{3}+\dfrac{1}{4}+...+\dfrac{1}{2007}\right)}{\left(1+\dfrac{2005}{2}\right)+\left(1+\dfrac{2004}{3}\right)+...+\left(1+\dfrac{1}{2006}\right)+1}\)

\(=\dfrac{2006\left(\dfrac{1}{2}+\dfrac{1}{3}+...+\dfrac{1}{2007}\right)}{\dfrac{2007}{2}+\dfrac{2007}{3}+...+\dfrac{2007}{2007}}=\dfrac{2006}{2007}\)

Ta có: \(C=\dfrac{\dfrac{2006}{2}+\dfrac{2006}{3}+\dfrac{2006}{4}+...+\dfrac{2006}{2007}}{\dfrac{2006}{1}+\dfrac{2005}{2}+\dfrac{2004}{3}+...+\dfrac{1}{2006}}\)

\(=\dfrac{\dfrac{2006}{2}+\dfrac{2006}{3}+\dfrac{2006}{4}+...+\dfrac{2006}{2007}}{1+\left(1+\dfrac{2005}{2}\right)+\left(1+\dfrac{2004}{3}\right)+...+\left(1+\dfrac{1}{2006}\right)}\)

\(=\dfrac{\dfrac{2006}{2}+\dfrac{2006}{3}+\dfrac{2006}{4}+...+\dfrac{2006}{2007}}{\dfrac{2007}{2007}+\dfrac{2007}{2}+\dfrac{2007}{3}+...+\dfrac{2007}{2006}}\)

\(=\dfrac{2006}{2007}\)

12 tháng 5 2021

bạn giỏi quáeoeo

14 tháng 7 2017

Ta có:

\(2006A=\dfrac{2006^{2007}+2016}{2006^{2007}+1}=1+\dfrac{2005}{2006^{2007}+1}\)

\(2006B=\dfrac{2006^{2006}+2006}{2006^{2006}+1}=1+\dfrac{2005}{2006^{2006}+1}\)

Do \(\dfrac{2005}{2006^{2006}+1}>\dfrac{2005}{2006^{2007}+1}\Rightarrow1+\dfrac{2005}{2006^{2006}+1}>1+\dfrac{2005}{2006^{2007}+1}\)

\(\Rightarrow2006A< 2006B\Rightarrow A< B\)

14 tháng 7 2017

Mình sẽ giải cách ngắn hơn cách bạn đạt nha:

Nếu:

\(\dfrac{a}{b}< 1\Rightarrow\dfrac{a+m}{b+m}< 1\left(m\in N\right)\)

\(A=\dfrac{2006^{2006}+1}{2006^{2007}+1}< 1\)

\(A< \dfrac{2006^{2006}+1+2005}{2006^{2007}+1+2005}\Rightarrow A< \dfrac{2006^{2006}+2006}{2006^{2007}+2006}\Rightarrow A< \dfrac{2006\left(2006^{2005}+1\right)}{2006\left(2006^{2006}+1\right)}\Rightarrow A< \dfrac{2006^{2005}+1}{2006^{2006}+1}=B\)\(A< B\)

20 tháng 8 2017

a) Vì A=\(\dfrac{15^{16}+1}{15^{17}+1}\) < 1

\(\Rightarrow\dfrac{15^{16}+1}{15^{17}+1}< \dfrac{15^{16}+1+14}{15^{17}+1+14}=\dfrac{15^{16}+15}{15^{17}+15}\) \(=\dfrac{15\left(15^{15}+1\right)}{15\left(15^{16}+1\right)}\) \(=\dfrac{15^{15}+1}{15^{16}+1}\)

Vậy A<B

20 tháng 8 2017

b) A=\(\dfrac{2006^{2007}+1}{2006^{2006}+1}>1\)

\(\Rightarrow\dfrac{2006^{2007}+1+2005}{2006^{2006}+1+2005}\)

= \(\dfrac{2006^{2007}+2006}{2006^{2006}+2006}\)

= \(\dfrac{2006\left(2006^{2006}+1\right)}{2006\left(2006^{2005}+1\right)}\)

= \(\dfrac{2006^{2006+1}}{2006^{2005}+1}\)

Vậy A>B

14 tháng 2 2018

Áp dụng Bất đẳng thức :

\(\dfrac{a}{b}< 1\Leftrightarrow\dfrac{a}{b}< \dfrac{a+m}{b+m}\)

Ta có :

\(\dfrac{2006^{2006}+1}{2006^{2007}+1}< \dfrac{2006^{2006}+1+2005}{2006^{2007}+1+2005}=\dfrac{2006^{2006}+2006}{2006^{2007}+2006}=\dfrac{2006\left(2006^{2005}+1\right)}{2006\left(2006^{2006}+1\right)}=\dfrac{2006^{2005}+1}{2006^{2006}+1}\)

\(\Leftrightarrow\dfrac{2006^{2006}+1}{2006^{2007}+1}< \dfrac{2006^{2005}+1}{2006^{2006}+1}\)

21 tháng 3 2018

Chắc bạn giỏi môn Toán lắm ha

30 tháng 1 2022

- Mình dùng cách lớp 8 để làm câu b được không :)?

30 tháng 1 2022

ko :) 

19 tháng 11 2017

Ta có :

\(A=\dfrac{\dfrac{2008}{1}+\dfrac{2007}{2}+....................+\dfrac{2}{2007}+\dfrac{1}{2008}}{\dfrac{1}{2}+\dfrac{1}{3}+....................+\dfrac{1}{2008}+\dfrac{1}{2009}}\)

\(\Rightarrow A=\dfrac{\left(\dfrac{2007}{2}+1\right)+.....+\left(\dfrac{2}{2007}+1\right)+\left(\dfrac{1}{2008}+1\right)+1}{\dfrac{1}{2}+\dfrac{1}{3}+...............+\dfrac{1}{2008}+\dfrac{1}{2009}}\)

\(\Rightarrow A=\dfrac{\dfrac{2009}{2}+...................+\dfrac{2009}{2007}+\dfrac{2009}{2008}+\dfrac{2009}{2009}}{\dfrac{1}{2}+\dfrac{1}{3}+.....................+\dfrac{1}{2008}+\dfrac{1}{2009}}\)

\(\Rightarrow A=\dfrac{2009\left(\dfrac{1}{2}+..........................+\dfrac{1}{2008}+\dfrac{1}{2009}\right)}{\dfrac{1}{2}+\dfrac{1}{3}+............................+\dfrac{1}{2008}+\dfrac{1}{2009}}\)

\(\Rightarrow A=2009\)

14 tháng 3 2017

=>B=\(\dfrac{1}{4.4}+\dfrac{1}{6.6}+\dfrac{1}{8.8}+...+\dfrac{1}{2006.2006}\)

=>B<\(\dfrac{1}{3.5}+\dfrac{1}{5.7}+\dfrac{1}{7.9}+...+\dfrac{1}{2005.2007}\)

=>B<\(\dfrac{2}{2}.\left(\dfrac{1}{3.5}+\dfrac{1}{5.7}+\dfrac{1}{7.9}+...+\dfrac{1}{2005.2007}\right)\)

=>B<\(\dfrac{1}{2}.\left(\dfrac{2}{3.5}+\dfrac{2}{5.7}+\dfrac{2}{7.9}+...+\dfrac{2}{2005.2007}\right)\)

=>B<\(\dfrac{1}{2}.\left(\dfrac{1}{3}-\dfrac{1}{5}+\dfrac{1}{5}-\dfrac{1}{7}+...+\dfrac{1}{2005}-\dfrac{1}{2007}\right)\)

=>B<\(\dfrac{1}{2}.\left(\dfrac{1}{3}+\dfrac{1}{5}-\dfrac{1}{5}+...+\dfrac{1}{2005}-\dfrac{1}{2005}-\dfrac{1}{200}\right)\)(xin lỗi, đoạn cuối (chỗ 200 í )là 2007 nhá

=>B<\(\dfrac{1}{2}.\left(\dfrac{1}{3}-\dfrac{1}{2007}\right)\)

=>B<\(\dfrac{1}{2}.\dfrac{668}{2007}\)

=>B<\(\dfrac{1.668}{2.2007}\)

=>B<\(\dfrac{1.668:2}{2.2007:2}\)

=>B<\(\dfrac{334}{2007}\)

Tick cho tôi nha :D

28 tháng 7 2018

Chị sử dụng cách làm lớp 7 ở câu 3 nha em

em cũng tự quy đồng và suy ra cách làm của cô giáo dạy em nha

chữ cj xấu thì mong em thông cảm

Ôn tập cuối năm phần số học

27 tháng 7 2018

1, \(\dfrac{1717}{8585}=\dfrac{17.101}{85.101}\&\dfrac{1313}{5151}=\dfrac{13.101}{51.101}\)

\(\Leftrightarrow\dfrac{1}{5}\&\dfrac{13}{51}\)

Ta thấy \(\dfrac{1}{5}< \dfrac{13}{51}\Rightarrow\dfrac{1717}{8585}< \dfrac{1313}{5151}\)