K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

20 tháng 12 2015

Gọi chiều dài 3 tấm vải lần lượt là: a,b,c(m)

Ta có: a+b+c=234

2/3*a=3/5*b=6/7*c

nên a=3/5:2/3*b=9/10*b

nên c=3/5:6/7*b=7/10*b

nên 9/10*b+b+7/10*b=234

(9/10+1+7/10)*b=234

13/5*b=234

b=234:13/5

b=90

nên a=9/10*90=81

nên c=7/10*90=63

Vậy chiều dài 3 tấm lần lượt là: 81;90;63(m)

24 tháng 4 2021

ê bạn ơi tìm y sao lại có x

24 tháng 4 2021

\(\frac{2}{3}\cdot y-\frac{12}{3}:\left(\frac{2}{3}+\frac{2}{15}+\frac{2}{35}+\frac{2}{63}+\frac{2}{99}+\frac{2}{143}\right)=\frac{1}{3}\)\(\frac{1}{3}\)

\(\frac{2}{3}\cdot y-4:\left(\frac{2}{1\cdot3}+\frac{2}{3\cdot5}+\frac{2}{5\cdot7}+\frac{2}{7\cdot9}+\frac{2}{9\cdot11}+\frac{2}{11\cdot13}\right)=\frac{1}{3}\)

\(\frac{2}{3}\cdot y-4:\left(\frac{3-1}{1\cdot3}+\frac{5-3}{3\cdot5}+\frac{7-5}{5\cdot7}+\frac{9-7}{7\cdot9}+\frac{11-9}{9\cdot11}+\frac{13-11}{11\cdot13}\right)=\frac{1}{3}\)

\(\frac{2}{3}\cdot y-4:\left(1+\frac{1}{3}-\frac{1}{3}+\frac{1}{5}-\frac{1}{5}+\frac{1}{7}-\frac{1}{7}+\frac{1}{9}-\frac{1}{9}+\frac{1}{11}-\frac{1}{11}+\frac{1}{13}\right)\)\(=\frac{1}{3}\)

\(\frac{2}{3}\cdot y-4:\left(\frac{1}{1}+\frac{1}{3}\right)=\frac{1}{3}\)

\(\frac{2}{3}\cdot y-4:\frac{4}{3}\)\(=\frac{1}{3}\)

\(\frac{2}{3}\cdot y-4\cdot\frac{3}{4}=\frac{1}{3}\)

\(\frac{2}{3}\cdot y-3=\frac{1}{3}\)

\(\frac{2}{3}\cdot y=\frac{1}{3}+3\)

\(\frac{2}{3}\cdot y=\frac{10}{3}\)

\(y=\frac{10}{3}:\frac{2}{3}\)

y=5

21 tháng 12 2018

Đặt \(B=\frac{3}{15}+\frac{3}{35}+\frac{3}{63}+\frac{3}{99}+\frac{3}{143}\)

\(\Leftrightarrow B=\frac{3}{3.5}+\frac{3}{5.7}+\frac{3}{7.9}+\frac{3}{9.11}+\frac{3}{11.13}\)

\(\Leftrightarrow2B=3\left(\frac{2}{3.5}+\frac{2}{5.7}+\frac{2}{7.9}+\frac{2}{9.11}+\frac{2}{11.13}\right)\)

\(\Leftrightarrow2B=3\left(\frac{1}{3}-\frac{1}{5}+\frac{1}{5}-\frac{1}{7}+\frac{1}{7}-\frac{1}{9}+\frac{1}{9}-\frac{1}{11}+\frac{1}{11}-\frac{1}{13}\right)\)

\(\Leftrightarrow2B=3\left(\frac{1}{3}-\frac{1}{13}\right)=1-\frac{3}{13}=\frac{10}{13}\)

\(\Leftrightarrow A=1+\frac{3}{15}+\frac{3}{35}+\frac{3}{63}+\frac{3}{99}+\frac{3}{143}=1+\frac{10}{13}=\frac{23}{13}\)

999 + 3 + 98 + 998 + 3 + 9 

= ( 999 + 1 ) + ( 98 +  2 ) +  ( 998 +  2 ) +  ( 99 + 1 ) +  ( 9 + 1 ) 

= 1000 +  100 +  1000 + 100 +  10 

= 2110

636 - 576 - 99 +  367 

= ( 636  +  364 ) + 3 - ( 575 +  100 ) 

= 900 - ( 675 - 3 ) 

= 228

5034 - 997 - 998 - 999

= 5034 + 6 - ( 1000 +  1000 +  1000 )

= 5040 - 3000

= 2040 

Mỏi tay quá k giúp mình nhé !!!!!!

30 tháng 7 2015

a=2001000

b=2500

c=1156

21 tháng 8 2016

a = 2001000

b = 2500

c =1156

23 tháng 9 2018

\(B=\dfrac{4}{3}+\dfrac{4}{15}+\dfrac{4}{35}+...+\dfrac{4}{143}\) 

    \(=4(\dfrac{1}{3}+\dfrac{1}{15}+\dfrac{1}{35}+...+\dfrac{1}{143})\)

        vì \(\dfrac{1}{3}+\dfrac{1}{15}+\dfrac{1}{35}+...+\dfrac{1}{143}<\dfrac{1}{2}\) nên \(4(\dfrac{1}{3}+\dfrac{1}{15}+\dfrac{1}{35}+...+\dfrac{1}{143})<4*\dfrac{1}{2}=2\Rightarrow B<2\)

\(\left(\frac{1}{3}+\frac{1}{15}+\frac{1}{35}+\frac{1}{63}+\frac{1}{99}\right).y=\frac{2}{3}\)

\(\frac{1}{2}.\left(1-\frac{1}{3}\right)+\frac{1}{2}.\left(\frac{1}{3}-\frac{1}{5}\right)+\frac{1}{2}.\left(\frac{1}{5}-\frac{1}{7}\right)+\frac{1}{2}.\left(\frac{1}{7}-\frac{1}{9}\right)+\frac{1}{2}.\left(\frac{1}{9}-\frac{1}{11}\right).y=\frac{2}{3}\)

\(\frac{1}{2}.\left(1-\frac{1}{3}+\frac{1}{3}-\frac{1}{5}+\frac{1}{5}-\frac{1}{7}+\frac{1}{7}-\frac{1}{9}+\frac{1}{9}-\frac{1}{11}\right).y=\frac{2}{3}\)

\(\frac{1}{2}.\left(1-\frac{1}{11}\right).y=\frac{2}{3}\)

\(\left(1-\frac{1}{11}\right).y=\frac{4}{3}\)

\(\frac{10}{11}.y=\frac{4}{3}\)

\(\Rightarrow y=\frac{22}{15}\)

25 tháng 11 2019

làm thế nào vậy chỉ tui tui cũng đang cần bài này

18 tháng 8 2017

Bài 1:

\(A=\frac{5}{3.6}+\frac{5}{6.9}+....+\frac{5}{96.99}\)

\(\Rightarrow\frac{3}{5}A=\frac{3}{3.6}+\frac{3}{6.9}+....+\frac{3}{96.99}\)

\(\Rightarrow\frac{3}{5}A=\frac{1}{3}-\frac{1}{6}+\frac{1}{6}-\frac{1}{9}+...+\frac{1}{96}-\frac{1}{99}\)

\(=\frac{1}{3}-\frac{1}{99}=\frac{32}{99}\)

\(\Rightarrow A=\frac{32}{99}\div\frac{3}{5}=\frac{160}{297}\)

Bái 2:

\(B=\frac{2}{3.7}+\frac{2}{7.11}+...+\frac{2}{99.103}\)

\(\Rightarrow2B=\frac{4}{3.7}+\frac{4}{7.11}+....+\frac{4}{99.103}\)

\(\Rightarrow2B=\frac{1}{3}-\frac{1}{7}+\frac{1}{7}-\frac{1}{11}+....+\frac{1}{99}-\frac{1}{103}\)

\(=\frac{1}{3}-\frac{1}{103}=\frac{100}{309}\)

\(\Rightarrow B=\frac{100}{309}\div2=\frac{50}{309}\)

18 tháng 8 2017

Bài 1:

Ta có:

\(\frac{5}{n.\left(n+3\right)}=\frac{5}{3}.\frac{3}{n.\left(n+3\right)}=\frac{5}{3}.\frac{\left(n+3\right)-n}{n.\left(n+3\right)}=\frac{5}{3}.\left[\frac{n+3}{n.\left(n+3\right)}-\frac{n}{n\left(n+3\right)}\right]\)\(=\frac{5}{3}\left(\frac{1}{n}-\frac{1}{n+3}\right)\)

\(\frac{5}{3.6}+\frac{5}{6.9}+\frac{5}{9.12}+...+\frac{5}{96.99}=\frac{5}{3}\left(\frac{1}{3}-\frac{1}{6}+\frac{1}{6}-\frac{1}{9}+...+\frac{1}{96}-\frac{1}{99}\right)\)