Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Đây bạn
Viết lại bài toán cần chứng minh
13+23+33+..n3=(1+2+3+...+n)213+23+33+..n3=(1+2+3+...+n)2
Với n=1;n=2n=1;n=2 thì đẳng thức hiển nhiên đúng, hay chính là câu a,b đó
Giả sử đẳng thức đúng với n=kn=k
Tức 13+23+33+...k3=(1+2+3+4..+k)213+23+33+...k3=(1+2+3+4..+k)2
Ta sẽ chứng minh nó đúng với n=k+1n=k+1
Viết lại đẳng thức cần chứng minh 13+23+33+...k3+(k+1)3=(1+2+3+4..+k+k+1)213+23+33+...k3+(k+1)3=(1+2+3+4..+k+k+1)2 (*)
Mặt khác ta có công thức tính tổng sau 1+2+3+4+...+n=n(n+1)21+2+3+4+...+n=n(n+1)2
⇒(1+2+3+4+...+n)2=(n2+n)24⇒(1+2+3+4+...+n)2=(n2+n)24
Vậy viết lại đẳng thức cần chứng minh
(k2+k)24+(k+1)3=(k2+3k+2)24(k2+k)24+(k+1)3=(k2+3k+2)24
⇔(k2+3k+2)2−(k2+k)2=4(k+1)3⇔(k2+3k+2)2−(k2+k)2=4(k+1)3
Bằng biện pháp "nhân tung tóe", đẳng thức cần chứng minh tuơng đuơng
⇔4k3+12k2+12k+4=4(k+1)3⇔4k3+12k2+12k+4=4(k+1)3
⇔4(k+1)3=4(k+1)3⇔4(k+1)3=4(k+1)3 ~ Đẳng thức này đúng.
Vậy theo nguyên lý quy nạp ta có đpcm.
Giải hẳn hoi nha các bạn, đừng có viết luôn dạng tổng quát, nha
b)Ta có :
\(5^{14}\equiv5625\left(mod10000\right)\)
\(\Rightarrow\left(5^{14}\right)^2\equiv5625^2\equiv0625\left(mod10000\right)\)
\(\Rightarrow\left(5^{28}\right)^{71}\equiv0625\left(mod10000\right)\)
\(\Rightarrow5^{1998}\equiv0625\left(mod1000\right)\)
\(\Rightarrow5^4\equiv0625\left(mod1000\right)\)
\(\Rightarrow5^{1992}=5^4.5^{1988}=0625^2\equiv0625\left(mod10000\right)\)
\(\Rightarrow\) \(4\) chữ số cuối của \(5^{1992}\) là \(0625\)
~ Học tốt ~
Chứng Minh:C=\(3^0+3^2+3^4+...+3^{2002}⋮7\)
Nhân C với \(3^2\)ta có:
\(9S=3^2+3^4+3^6+...+3^{2004}\)
\(\Rightarrow9S-S=\left(3^2+3^4+...+3^{2004}\right)-\left(3^0+3^2+3^4+...+3^{2002}\right)\)
\(\Rightarrow8S=3^{2004}-1\)
\(\Rightarrow S=\dfrac{3^{2004}-1}{8}\)
Chứng minh:
Ta có:\(3^{2004}-1=\left(3^6\right)^{334-1}=\left(3^6-1\right).a=7.104.a\)
\(\)UCLN(7;8)=1
\(\Rightarrow S⋮7\)
Sửa lại 1 chút!
Chứng minh: C= \(3^0+3^2+3^4+3^6+...+3^{2002}\) chia hết cho 7
dấu hiệu chia hết cho 4 là : 2 số cuối cùng chia hết cho 4 thì số đó chia hết cho 4
dấu hiệu chia hết 5 : số có tận cùng là 0 ; 5 thì chia hết 5
Vì \(x1357y⋮5\) => y=0 hoặc 5
TH1 : y = 0
=> x13570\(⋮5\)
vì 70 \(⋮4̸\) ( loại )
TH2 : y = 5
=> \(x13575⋮5\) nhưng 75 ko chia hết 4 (loại )
từ 2 trường hợp trên => ko tồn tại y
\(\Leftrightarrow\) ko có số x1357y \(⋮5;4\)
Vì \(\overline{x1357y}⋮5\) nên \(y\in\left\{0;5\right\}\).
Do \(75⋮4\) nên \(y=0\). Ta được \(\overline{x13570}\).
Vì \(\overline{x13570}⋮4;5\) nên \(x\in\left\{1;2;3;4;5;6;7;8;9\right\}\).
Vậy \(x\in\left\{1;2;3;4;5;6;7;8;9\right\}\)và \(y=0\).
A =\(\dfrac{4}{2.5}+\dfrac{4}{5.8}+\dfrac{4}{8.11}+...+\dfrac{4}{65.68}\)
A = \(\dfrac{4}{3}.\left(\dfrac{3}{2.5}+\dfrac{3}{5.8}+\dfrac{3}{8.11}+...+\dfrac{3}{65.68}\right)\)
A = \(\dfrac{4}{3}.\left(\dfrac{1}{2}-\dfrac{1}{5}+\dfrac{1}{5}-\dfrac{1}{8}+\dfrac{1}{8}-\dfrac{1}{11}+...+\dfrac{1}{65}-\dfrac{1}{68}\right)\)
A = \(\dfrac{4}{3}.\left[\dfrac{1}{2}-\left(\dfrac{1}{5}-\dfrac{1}{5}\right)-\left(\dfrac{1}{8}-\dfrac{1}{8}\right)-\left(\dfrac{1}{11}-\dfrac{1}{11}\right)-...-\left(\dfrac{1}{65}-\dfrac{1}{65}\right)-\dfrac{1}{68}\right]\)
A = \(\dfrac{4}{3}.\left[\dfrac{1}{2}-0-0-0-...-0-\dfrac{1}{68}\right]\)
A = \(\dfrac{4}{3}.\left[\dfrac{1}{2}-\dfrac{1}{68}\right]\)
A = \(\dfrac{4}{3}.\dfrac{33}{68}\)
A = \(\dfrac{11}{17}\)
-1/2+3/21+ -2/6 + -5/30 chứ gì
đầu tiên rút gọn lại cho nó nhỏ sẽ dễ tính hơn
-1/2+3/21+ -2/6 + -5/30
= -1/2 + 1/7 + -1/3 + -1/6
=( -1/2 + -1/3 + -1/6) +1/7
=(-3/6 + -2/6 + -1/6) + 1/7
=-6/6 + 1/7
=1 +1/7
=7/7+1/7
=8/7
\(4x\cdot\left(x:2\right)-3\left(1-2x\right)=7-2\left(x+1\right)\)
\(\Leftrightarrow4x\cdot\dfrac{x}{2}-3+6x=7-2x-2\)
\(\Leftrightarrow2x\cdot x-3+6x=5-2x\)
\(\Leftrightarrow2x^2-3+6x=5-2x\)
\(\Leftrightarrow2x^2-3+6x-5+2x=0\)
\(\Leftrightarrow2x^2-8+8x=0\)
\(\Leftrightarrow2\left(x^2-4+4x\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}x=-2+2\sqrt{2}\\x=-2-2\sqrt{2}\end{matrix}\right.\)
Vậy \(x_1=-2-2\sqrt{2};x_2=-2+2\sqrt{2}\)
\(4x\left(x:2\right)-3x\left(1-2x\right)=7-2\left(x+1\right)\)
\(\Leftrightarrow4x.\dfrac{x}{2}-3+6x-7+2x+2=0\Leftrightarrow2x^2+8x-8=0\Leftrightarrow2\left(x^2+4x-4\right)=0\)
\(\Leftrightarrow\left(x^2+4x+4\right)-8=0\)
\(\Leftrightarrow\left(x+2\right)^2=8\Rightarrow\left[{}\begin{matrix}x-2=\sqrt{8}\\x-2=-\sqrt{8}\end{matrix}\right.\Rightarrow\left[{}\begin{matrix}x=\sqrt{2}+2\\x=-\sqrt{8}+2\end{matrix}\right.\)
b) ta có : 2A=\(2+2^{2}+2^{3}+2^{4}+...+2^{10}\)
2A-A=\((2+2^{2}+2^{3}+2^{4}+...+2^{10})-(1+2+2^{2}+2^{3}+...+2^{9})\)
A=\(2^{10}-1\)=1023
Cảm ơn bạn