Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) \(\left(x+1\right)\left(x^2-x+1\right)-\left(x-1\right)\left(x^2+x+1\right)\)
\(=\left(x^3+1\right)-\left(x^3-1\right)\)
\(=x^3+1-x^3+1\)
\(=2\)
Biểu thức trên có giá trị bằng 2 với mọi x nên không phụ thuộc vào biến.
b) \(\left(2x+3y\right)\left(4x^2-6xy+9y^2\right)-\left(2x-3y\right)\left(4x^2+6xy+9y^2\right)-27\left(2y^3-1\right)\)
\(=\left(8x^3+27y^3\right)-\left(8x^3-27y^3\right)-27\left(2y^3-1\right)\)
\(=8x^3+27y^3-8x^3+27y^3-54y^3+27\)
\(=27\)
Biểu thức trên có giá trị bằng 27 với mọi x nên không phụ thuộc vào biến.
c) \(\left(x-1\right)^3-\left(x+4\right)\left(x^2-4x+16\right)+3x\left(x-1\right)\)
\(=x^3-3x^2+3x-1-x^3-64+3x^2-3x\)
\(=-65\)
Biểu thức trên có giá trị bằng -65 với mọi x nên không phụ thuộc vào biến.
d) \(\left(x+y+z\right)^2+\left(x-y\right)^2+\left(x-z\right)^2+\left(y-z\right)^2-3\left(x^2+y^2+z^2\right)\)
\(=x^2+y^2+z^2+2\left(xy+yz+xz\right)+\left(x-y\right)^2+\left(x-z\right)^2+\left(y-z\right)^2-3\left(x^2+y^2+z^2\right)\)
\(=2\left(xy+yz+xz\right)-2\left(x^2+y^2+z^2\right)+x^2-2xy+y^2+x^2-2xz+z^2+y^2-2yz+z^2\)
\(=2\left(xy+yz+xz\right)-2\left(x^2+y^2+z^2\right)+2\left(x^2+y^2+z^2\right)-2\left(xy+yz+xz\right)\)
\(=0\)
Biểu thức trên có giá trị bằng 0 với mọi x nên không phụ thuộc vào biến.
Bài 2:
1: \(\left(2x-1\right)^2-4\left(2x-1\right)=0\)
=>\(\left(2x-1\right)\left(2x-1-4\right)=0\)
=>(2x-1)(2x-5)=0
=>\(\left[{}\begin{matrix}2x-1=0\\2x-5=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=\dfrac{1}{2}\\x=\dfrac{5}{2}\end{matrix}\right.\)
2: \(9x^3-x=0\)
=>\(x\left(9x^2-1\right)=0\)
=>x(3x-1)(3x+1)=0
=>\(\left[{}\begin{matrix}x=0\\3x-1=0\\3x+1=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=0\\x=\dfrac{1}{3}\\x=-\dfrac{1}{3}\end{matrix}\right.\)
3: \(\left(3-2x\right)^2-2\left(2x-3\right)=0\)
=>\(\left(2x-3\right)^2-2\left(2x-3\right)=0\)
=>(2x-3)(2x-3-2)=0
=>(2x-3)(2x-5)=0
=>\(\left[{}\begin{matrix}2x-3=0\\2x-5=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=\dfrac{3}{2}\\x=\dfrac{5}{2}\end{matrix}\right.\)
4: \(\left(2x-5\right)\left(x+5\right)-10x+25=0\)
=>\(2x^2+10x-5x-25-10x+25=0\)
=>\(2x^2-5x=0\)
=>\(x\left(2x-5\right)=0\)
=>\(\left[{}\begin{matrix}x=0\\2x-5=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=0\\x=\dfrac{5}{2}\end{matrix}\right.\)
Bài 1:
1: \(3x^3y^2-6xy\)
\(=3xy\cdot x^2y-3xy\cdot2\)
\(=3xy\left(x^2y-2\right)\)
2: \(\left(x-2y\right)\left(x+3y\right)-2\left(x-2y\right)\)
\(=\left(x-2y\right)\cdot\left(x+3y\right)-2\cdot\left(x-2y\right)\)
\(=\left(x-2y\right)\left(x+3y-2\right)\)
3: \(\left(3x-1\right)\left(x-2y\right)-5x\left(2y-x\right)\)
\(=\left(3x-1\right)\left(x-2y\right)+5x\left(x-2y\right)\)
\(=(x-2y)(3x-1+5x)\)
\(=\left(x-2y\right)\left(8x-1\right)\)
4: \(x^2-y^2-6y-9\)
\(=x^2-\left(y^2+6y+9\right)\)
\(=x^2-\left(y+3\right)^2\)
\(=\left(x-y-3\right)\left(x+y+3\right)\)
5: \(\left(3x-y\right)^2-4y^2\)
\(=\left(3x-y\right)^2-\left(2y\right)^2\)
\(=\left(3x-y-2y\right)\left(3x-y+2y\right)\)
\(=\left(3x-3y\right)\left(3x+y\right)\)
\(=3\left(x-y\right)\left(3x+y\right)\)
6: \(4x^2-9y^2-4x+1\)
\(=\left(4x^2-4x+1\right)-9y^2\)
\(=\left(2x-1\right)^2-\left(3y\right)^2\)
\(=\left(2x-1-3y\right)\left(2x-1+3y\right)\)
8: \(x^2y-xy^2-2x+2y\)
\(=xy\left(x-y\right)-2\left(x-y\right)\)
\(=\left(x-y\right)\left(xy-2\right)\)
9: \(x^2-y^2-2x+2y\)
\(=\left(x^2-y^2\right)-\left(2x-2y\right)\)
\(=\left(x-y\right)\left(x+y\right)-2\left(x-y\right)\)
\(=\left(x-y\right)\left(x+y-2\right)\)
a) \(3x\left(x-2\right)-5x\left(1-x\right)-8\left(x^2-3\right)\)
\(=3x^2-6x-5x+5x^2-8x^2+24\)
\(=24-11x\)
b) \(\left(4x^2-3y\right)\cdot2y-\left(3x^2-4y\right)\cdot3y\)
\(=8x^2y-6y^2-9x^2y+12y^2\)
\(=6y^2-x^2y\)
c) \(3y^2\left[\left(2x-1\right)+y+1\right]-y\left(1-y-y^2\right)+y\)
\(=3y^2\cdot\left(2x-1+y+1\right)-y\cdot\left(1-y-y^2\right)+y\)
\(=6xy^2-3y^2+3y^3+3y^2-y+y^2+y^3+y\)
\(=4y^3+y^2+6xy^2\)
Bài 1 :
a) \(\left(3x-1\right)^2-\left(3x+2\right)\left(3x-2\right)=2014\)
\(\Leftrightarrow9x^2-6x+1-\left(9x^2-4\right)=2014\)
\(\Leftrightarrow-6x=2009\)
\(\Leftrightarrow x=-\dfrac{2009}{6}=-334\dfrac{5}{6}\)
b) \(5x^2+4xy+4y^2+4x+1=0\)
\(\Leftrightarrow\left(x^2+4xy+4y^2\right)+\left(4x^2+4x+1\right)=0\)
\(\Leftrightarrow\left(x+2y\right)^2+\left(2x+1\right)^2=0\)
\(\Leftrightarrow\left\{{}\begin{matrix}x+2y=0\\2x+1=0\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=-\dfrac{1}{2}\\y=\dfrac{1}{4}\end{matrix}\right.\)
Bài 2 :
Ta có :
\(D=\left(4x^2-12xy+9y^2\right)-\left(9y^2-4\right)-\left(1-4x+4x^2\right)+12xy-4x\)
\(=4x^2-12xy+9y^2-9y^2+4-1+4x-4x^2+12xy-4x=3\)
Vậy biểu thức D không phụ thuộc vào các biến x,y
a: \(=4x^2-25-4x^2+12x-9-12x=-34\)
b: \(=8y^3-12y^2+6y-1-2y\left(4y^2-12y+9\right)-12y^2+12y\)
\(=8y^3-24y^2+18y-1-8y^3+24y^2-18y=-1\)
c: \(=x^3+27-x^3-20=7\)
d: \(=3y\left(9y^2+12y+4\right)-27y^3+1-36y^2-12y-1\)
\(=27y^3+36y^2+12y-27y^3-36y^2-12y\)
=0
a) (4x2 – 9y2) : (2x – 3y) = [(2x)2 – (3y)2] : (2x – 3y) = 2x + 3y;
b) (27x3 – 1) : (3x – 1) = [(3x)3 – 1] : (3x – 1) = (3x)2 + 3x + 1 = 9x2 + 3x + 1
c) (8x3 + 1) : (4x2 – 2x + 1) = [(2x)3 + 1] : (4x2 – 2x + 1)
= (2x + 1)[(2x)2 – 2x + 1] : (4x2 – 2x + 1)
= (2x + 1)(4x2 – 2x + 1) : (4x2 – 2x + 1) = 2x + 1
d) (x2 – 3x + xy -3y) : (x + y)
= [(x2 + xy) – (3x + 3y)] : (x + y)
= [x(x + y) – 3(x + y)] : (x + y)
= (x + y)(x – 3) : (x + y)
= x – 3.
Tính nhanh:
a) (4x2 – 9y2) : (2x – 3y); b) (27x3 – 1) : (3x – 1);
c) (8x3 + 1) : (4x2 – 2x + 1); d) (x2 – 3x + xy -3y) : (x + y)
Bài giải:
a) (4x2 – 9y2) : (2x – 3y) = [(2x)2 – (3y)2] : (2x – 3y) = 2x + 3y;
b) (27x3 – 1) : (3x – 1) = [(3x)3 – 1] : (3x – 1) = (3x)2 + 3x + 1 = 9x2 + 3x + 1
c) (8x3 + 1) : (4x2 – 2x + 1) = [(2x)3 + 1] : (4x2 – 2x + 1)
= (2x + 1)[(2x)2 – 2x + 1] : (4x2 – 2x + 1)
= (2x + 1)(4x2 – 2x + 1) : (4x2 – 2x + 1) = 2x + 1
d) (x2 – 3x + xy -3y) : (x + y)
= [(x2 + xy) – (3x + 3y)] : (x + y)
= [x(x + y) – 3(x + y)] : (x + y)
= (x + y)(x – 3) : (x + y)
= x – 3.