Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(\left(2013.2014+2014.2015+2015.2016\right)\left(1+\frac{1}{3}-1\frac{1}{3}\right)\)
\(=\left(2013.2014+2014.2015+2015.2016\right)\left(\frac{4}{3}-\frac{4}{3}\right)\)
\(=\left(2013.2014+2014.2015+2015.2016\right).0\)
\(=0\)
\(a,\frac{131313}{151515}+\frac{131313}{353535}+\frac{131313}{636363}+\frac{131313}{999999}\)
\(=\frac{13}{15}+\frac{13}{35}+\frac{13}{63}+\frac{13}{99}\)
\(=13\left(\frac{1}{3.5}+\frac{1}{5.7}+\frac{1}{7.9}+\frac{1}{7.9}\right)\)
\(=13\left(\frac{1}{3}-\frac{1}{9}\right)\)
\(=13.\frac{2}{9}=\frac{26}{9}\)
\(b,\frac{1}{1.2}+\frac{1}{2.3}+\frac{1}{3.4}+...+\frac{1}{2017.2018}\)
\(=1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+...+\frac{1}{2017}-\frac{1}{2018}\)
\(=1-\frac{1}{2018}=\frac{2017}{2018}\)
P/s :Dấu chấm là dấu nhân nha
a. ta có (0.1+0.19)+(0.2+0.18)......+0.10
A=0.20+0.20++0.20+0.20+0.20+0.20+0.20+0.20+0.20+0.10
A=1.90
câu b mình pó tay
a ) \(A=0,1+0,2+...+0,19\)
\(A=\left(0,1+0,2+...+0,9\right)+\left(0,10+0,11+...+0,19\right)\)
\(A=0,1\times\left(1+2+...+9\right)+0,1\times\left(1+1,1+...+1,9\right)\)
\(A=0,1\times45+0,1\times14,5\)
\(A=0,1\times\left(45+14,5\right)\)
\(A=0,1\times59,5\)
\(A=5,95\)
b ) \(B=\left(2017\times2016+2014\times2015\right)\times\left(1+\frac{1}{2}\div1\frac{1}{2}+1\frac{1}{3}\right)\)
\(B=\left(2017\times2016+2014\times2015\right)\times\left(1+\frac{1}{2}\div\frac{3}{2}+\frac{4}{3}\right)\)
\(B=\left(2017\times2016+2014\times2015\right)\times\left(1+\frac{2}{6}+\frac{4}{3}\right)\)
\(B=\left(2017\times2016+2014\times2015\right)\times\frac{8}{3}\)
$\frac{\frac{2010}{2011}}{\frac{2012}{2013}}+\frac{\frac{2011}{2012}}{\frac{2013}{2014}}+\frac{\frac{2012}{2013}}{\frac{2014}{2015}}$
$\frac{\frac{2010}{2011}}{\frac{2012}{2013}}+\frac{\frac{2011}{2012}}{\frac{2013}{2014}}+\frac{\frac{2012}{2013}}{\frac{2014}{2015}}$
$\frac{\frac{2010+2011+2012}{2011+2012+2013}}{\frac{2012+2013+2014}{2013+2014+2015}}$
$\frac{\frac{2010}{2011}+\frac{2011}{2012}+\frac{2012}{2013}}{\frac{2012+2013+2014}{2013+2014+2015}}$
$\frac{\frac{2010+2011+2012}{2011+2012+2013}}{\frac{2012}{2013}+\frac{2013}{2014}+\frac{2014}{2015}}$
a,\(\frac{2015.2016+2015-1}{2014+2015.2016}=\frac{2015.2016+2014}{2014+2015.2016}=1\)\(1\)
b,\(=1-\frac{1}{5}+\frac{1}{5}...-\frac{1}{2011}+\frac{1}{2011}-\frac{1}{2015}=1-\frac{1}{2015}=\frac{2014}{2015}\)
c,\(=\frac{12}{35}+\frac{12}{35}+\frac{12}{35}+\frac{12}{35}=\frac{12}{35}.4=\frac{48}{35}\)
48/35 nha